6 research outputs found

    Increased circulating levels of vitamin D binding protein in MS patients

    Get PDF
    Vitamin D (vitD) low status is currently considered a main environmental factor in multiple sclerosis (MS) etiology and pathogenesis. VitD and its metabolites are highly hydrophobic and circulate mostly bound to the vitamin D binding protein (DBP) and with lower affinity to albumin, while less than 1\% are in a free form. The aim of this study was to investigate whether the circulating levels of either of the two vitD plasma carriers and/or their relationship are altered in MS. We measured DBP and albumin plasma levels in 28 MS patients and 24 healthy controls. MS patients were found to have higher DBP levels than healthy subjects. Concomitant interferon beta therapy did not influence DBP concentration, and the difference with the control group was significant in both females and males. No significant correlation between DBP and albumin levels was observed either in healthy controls or in patients. These observations suggest the involvement of DBP in the patho-physiology of MS

    Endogenous CCL2 neutralization restricts HIV-1 replication in primary human macrophages by inhibiting viral DNA accumulation

    Get PDF
    Macrophages are key targets of HIV-1 infection. We have previously described that the expressionof CC chemokine ligand 2 (CCL2) increases during monocyte differentiation to macrophages and it is furtherup-modulated by HIV-1 exposure. Moreover, CCL2 acts as an autocrine factor that promotes viral replication ininfected macrophages. In this study, we dissected the molecular mechanisms by which CCL2 neutralization inhibitsHIV-1 replication in monocyte-derived macrophages (MDM), and the potential involvement of the innate restrictionfactors protein sterile alpha motif (SAM) histidine/aspartic acid (HD) domain containing 1 (SAMHD1) and apolipoproteinB mRNA-editing, enzyme-catalytic, polypeptide-like 3 (APOBEC3) family members.Results:CCL2 neutralization potently reduced the number of p24 Gag+cells during the course of either productive orsingle cycle infection with HIV-1. In contrast, CCL2 blocking did not modify entry of HIV-1 based Virus Like Particles, thusdemonstrating that the restriction involves post-entry steps of the viral life cycle. Notably, the accumulation of viralDNA, both total, integrated and 2-LTR circles, was strongly impaired by neutralization of CCL2. Looking for correlates ofHIV-1 DNA accumulation inhibition, we found that the antiviral effect of CCL2 neutralization was independent of themodulation of SAMHD1 expression or function. Conversely, a strong and selective induction of APOBEC3A expression,to levels comparable to those of freshly isolated monocytes, was associated with the inhibition of HIV-1 replicationmediated by CCL2 blocking. Interestingly, the CCL2 neutralization mediated increase of APOBEC3A expression was typeI IFN independent. Moreover, the transcriptome analysis of the effect of CCL2 blocking on global gene expressionrevealed that the neutralization of this chemokine resulted in the upmodulation of additional genes involved in thedefence response to viruses.Conclusions:Neutralization of endogenous CCL2 determines a profound restriction of HIV-1 replication in primaryMDM affecting post-entry steps of the viral life cycle with a mechanism independent of SAMHD1. In addition, CCL2blocking is associated with induction of APOBEC3A expression, thus unravelling a novel mechanism which mightcontribute to regulate the expression of innate intracellular viral antagonistsin vivo. Thus, our study may potentially leadto the development of new therapeutic strategies for enhancing innate cellular defences against HIV-1 and protecting macrophages from infection

    1,25(OH)<sub>2</sub>D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients

    No full text
    Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis

    Best practices for the management of thymic epithelial tumors: A position paper by the Italian collaborative group for ThYmic MalignanciEs (TYME)

    No full text
    corecore