102 research outputs found

    Effects of atmospheric conditions on surface diffuse degassing

    Get PDF
    International audienceDiffuse degassing through the soil is commonly observed in volcanic areas and monitoring of carbon dioxide flux at the surface can provide a safe and effective way to infer the state of activity of the volcanic system. Continuous measurement stations are often installed on active volcanoes such as Furnas (Azores archipelago), which features low temperature fumaroles, hot and cold CO2 rich springs, and several diffuse degassing areas. As in other volcanoes, fluxes measured at Furnas are often correlated with environmental variables, such as air temperature or barometric pressure, with daily and seasonal cycles that become more evident when gas emission is low. In this work, we study how changes in air temperature and barometric pressure may affect the gas emission through the soil. The TOUGH2 geothermal simulator was used to simulate the gas propagation through the soil as a function of fluctuating atmospheric conditions. Then, a dual parameters study was performed to assess how the rock permeability and the gas source properties affect the resulting fluxes. Numerical results are in good agreement with the observed data at Furnas, and show that atmospheric variables may cause the observed daily cycles in CO2 fluxes. The observed changes depend on soil permeability and on the pressure driving the upward flux

    Locating clustered seismicity using Distance Geometry Solvers: applications for sparse and single-borehole DAS networks

    Full text link
    The determination of seismic event locations with sparse networks or single-borehole systems remains a significant challenge in observational seismology. Leveraging the advantages of the location approach HADES, which was initially developed for locating clustered seismicity recorded at two stations, we present here an improved version of the methodology: HADES-R. Where HADES previously needed a minimum of 4 absolutely located master events, HADES-R solves a least-squares problem to find the relative inter-event distances in the cluster, and uses only a single master event to find the locations of all events, and subsequently applies rotational optimiser to find the cluster orientation. It can leverage iterative station combinations if multiple receivers are available, to describe the cluster shape and orientation uncertainty with a bootstrap approach. The improved method requires P- and S-phase arrival picks, a homogeneous velocity model, a single master event with a known location, and an estimate of the cluster width. The approach is benchmarked on the 2019 Ridgecrest sequence recorded at two stations, and applied to two seismic clusters at the FORGE geothermal test site, including a microseismic monitoring scenario with a DAS in a vertical borehole. Traditional procedures struggle in these settings due to the ill-posed network configuration. The azimuthal ambiguity in this scenario is partially overcome by assuming that all events belong to the same cluster around the master event and a cluster width estimate. We find the cluster shape in both cases, although the orientation remains uncertain. The method's ability to constrain the cluster shape and location with only one well-located event offers promising implications, especially for environments where limited or specialised instrumentation is in use.Comment: 33 pages, 15 figures. Manuscript submitted to Geophysical Journal Internationa

    Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland

    Get PDF
    The rapid increase in energy demand in the city of Reykjavik has posed the need for an additional supply of deep geothermal energy. The deep-hydraulic (re-)stimulation of well RV-43 on the peninsula of Geldinganes (north of Reykjavik) is an essential component of the plan implemented by Reykjavik Energy to meet this energy target. Hydraulic stimulation is often associated with fluid-induced seismicity, most of which is not felt on the surface but which, in rare cases, can be a nuisance to the population and even damage the nearby building stock. This study presents a first-of-its-kind pre-drilling probabilistic induced seismic hazard and risk analysis for the site of interest. Specifically, we provide probabilistic estimates of peak ground acceleration, European microseismicity intensity, probability of light damage (damage risk), and individual risk. The results of the risk assessment indicate that the individual risk within a radius of 2 km around the injection point is below 0.1 micromorts, and damage risk is below 10−2, for the total duration of the project. However, these results are affected by several orders of magnitude of variability due to the deep uncertainties present at all levels of the analysis, indicating a critical need in updating this risk assessment with in situ data collected during the stimulation. Therefore, it is important to stress that this a priori study represents a baseline model and starting point to be updated and refined after the start of the project

    Buoyancy Effects on Upward Brine Displacement Caused by CO2 Injection

    Get PDF
    Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer

    Beta-Blocker Use in Older Hospitalized Patients Affected by Heart Failure and Chronic Obstructive Pulmonary Disease: An Italian Survey From the REPOSI Register

    Get PDF
    Beta (β)-blockers (BB) are useful in reducing morbidity and mortality in patients with heart failure (HF) and concomitant chronic obstructive pulmonary disease (COPD). Nevertheless, the use of BBs could induce bronchoconstriction due to β2-blockade. For this reason, both the ESC and GOLD guidelines strongly suggest the use of selective β1-BB in patients with HF and COPD. However, low adherence to guidelines was observed in multiple clinical settings. The aim of the study was to investigate the BBs use in older patients affected by HF and COPD, recorded in the REPOSI register. Of 942 patients affected by HF, 47.1% were treated with BBs. The use of BBs was significantly lower in patients with HF and COPD than in patients affected by HF alone, both at admission and at discharge (admission, 36.9% vs. 51.3%; discharge, 38.0% vs. 51.7%). In addition, no further BB users were found at discharge. The probability to being treated with a BB was significantly lower in patients with HF also affected by COPD (adj. OR, 95% CI: 0.50, 0.37-0.67), while the diagnosis of COPD was not associated with the choice of selective β1-BB (adj. OR, 95% CI: 1.33, 0.76-2.34). Despite clear recommendations by clinical guidelines, a significant underuse of BBs was also observed after hospital discharge. In COPD affected patients, physicians unreasonably reject BBs use, rather than choosing a β1-BB. The expected improvement of the BB prescriptions after hospitalization was not observed. A multidisciplinary approach among hospital physicians, general practitioners, and pharmacologists should be carried out for better drug management and adherence to guideline recommendations

    Modeling hydrothermal system: deriving observables and hydrothermal instability in volcanic and non-volcanic setting

    Get PDF
    Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions

    Impact of injection rate ramp-up on nucleation and arrest of dynamic fault slip

    No full text
    Fluid injection into underground formations reactivates preexisting geological discontinuities such as faults or fractures. In this work, we investigate the impact of injection rate ramp-up present in many standard injection protocols on the nucleation and potential arrest of dynamic slip along a planar pressurized fault. We assume a linear increasing function of injection rate with time, up to a given time t(c) after which a maximum value Q(m) is achieved. Under the assumption of negligible shear-induced dilatancy and impermeable host medium, we solve numerically the coupled hydro-mechanical model and explore the different slip regimes identified via scaling analysis. We show that in the limit when fluid diffusion time scale t(w) is much larger than the ramp-up time scale t(c), slip on an ultimately stable fault is essentially driven by pressurization at constant rate. Vice versa, in the limit when t(c)/t(w) >> 1, the pressurization rate, quantified by the dimensionless ratio Q(m)t(w)/t(c)Q* with Q* being a characteristic injection rate scale, does impact both nucleation time and arrest distance of dynamic slip. Indeed, for a given initial fault loading condition and frictional weakening property, lower pressurization rates delay the nucleation of a finite-sized dynamic event and increase the corresponding run-out distance approximately proportional to proportional to (Q(m)t(w)/t(c)Q*)^(-0.472). On critically stressed faults, instead, the ramp-up of injection rate activates quasi-static slip which quickly turn into a run-away dynamic rupture. Its nucleation time decreases non- linearly with increasing value of Q(m)t(w)/t(c)Q* and it may precede (or not) the one associated with fault pressurization at constant rate only.ISSN:2363-8427ISSN:2363-841

    TOUGH2-Seed: a coupled fluid flow and mechanical-Stochastic approach to model injection-induced seismicity

    No full text
    Understanding the injection-induced triggering mechanism is a fundamental step towards controlling the seismicity generated by deep underground exploitation. Here we propose a modeling approach based on coupling the TOUGH2 simulator with a geomechanical-stochastic model. The hydro-mechanical-stochastic model provides a good representation of different mechanisms influencing each other during and after the injection phase. Each mechanism affects the induced seismicity in a different way and at different times during the reservoir stimulation, confirming that a complex interaction is in place, and that more sophisticated and physics-based approaches coupled with statistical model are required to explain such a complex interaction. In addition to previous statistical and hybrid models, our approach accounts for a full 3D formulation of both stresses and fluid flow, further including all the TOUGH2 capabilities. Furthermore, it includes interactions between triggered seismic events through calculation of static stress transfer. In this work, we present the main capabilities of TOUGH2-SEED and apply the model to the Basel EGS case, successfully reproducing the injection pressure as well as the evolution of the seismicity

    Modeling the effects of in-situ conditions on induced seismicity

    No full text
    Fluid injection into deep geological reservoirs may induce seismicity. For example, wastewater injection in the US mid-continent has recently called the public's attention by causing several M>5 earthquakes. It is proposed that the injection leads to a pressurization of the reservoir and adjacent fault zones that can be reactivated if sufficiently high pressures are reached. However, to date it is not fully understood how exactly different in-situ pressure conditions affect the timing and size of the induced earthquakes. In this study, we therefore investigate the effect of varying initial pore pressure conditions on fault reactivation focusing on the timing and the size of induced earthquakes. Our results suggest that an initially overpressurized reservoir may lead to an earlier fault reactivation than a reservoir with hydro-static initial conditions, but the size of the induced earthquake does not differ significantly. Compartmentalization also leads to a similar size of the induced events, but delays the time of reactivation. We further test how the injection rate affects the induced earthquakes, and we find that a reduction in injection rate substantially delays the earthquake, but leads to a larger magnitude

    Spectral boundary integral method for simulating static and dynamic fields from a fault rupture in a poroelastodynamic solid

    No full text
    The spectral boundary integral method is popular for simulating fault, fracture, and frictional processes at a planar interface. However, the method is less commonly used to simulate off-fault dynamic fields. Here we develop a spectral boundary integral method for poroelastodynamic solid. The method has two steps: first, a numerical approximation of a convolution kernel and second, an efficient temporal convolution of slip speed and the appropriate kernel. The first step is computationally expensive but easily parallelizable and scalable such that the computational time is mostly restricted by computational resources. The kernel is independent of the slip history such that the same kernel can be used to explore a wide range of slip scenarios. We apply the method by exploring the short-time dynamic and static responses: first, with a simple source at intermediate and far-field distances and second, with a complex near-field source. We check if similar results can be attained with dynamic elasticity and undrained pore-pressure response and conclude that such an approach works well in the near-field but not necessarily at an intermediate and far-field distance. We analyze the dynamic pore-pressure response and find that the P-wave arrival carries a significant pore pressure peak that may be observed in high sampling rate pore-pressure measurements. We conclude that a spectral boundary integral method may offer a viable alternative to other approaches where the bulk is discretized, providing a better understanding of the near-field dynamics of the bulk in response to finite fault ruptures.ISSN:2363-8427ISSN:2363-841
    corecore