3 research outputs found

    Effects of four different antihypertensive drugs on plasma metabolomic profiles in patients with essential hypertension

    Get PDF
    Objective In order to search for metabolic biomarkers of antihypertensive drug responsiveness, we measured > 600 biochemicals in plasma samples of subjects participating in the GENRES Study. Hypertensive men received in a double-blind rotational fashion amlodipine, bisoprolol, hydrochlorothiazide and losartan, each as a monotherapy for one month, with intervening one-month placebo cycles. Methods Metabolomic analysis was carried out using ultra high performance liquid chromatography-tandem mass spectrometry. Full metabolomic signatures (the drug cycles and the mean of the 3 placebo cycles) became available in 38 to 42 patients for each drug. Blood pressure was monitored by 24-h recordings. Results Amlodipine (P values down to 0.002), bisoprolol (P values down to 2 x 10(-5)) and losartan (P values down to 2 x 10(-4)) consistently decreased the circulating levels of long-chain acylcarnitines. Bisoprolol tended to decrease (P values down to 0.002) the levels of several medium-and long-chain fatty acids. Hydrochlorothiazide administration was associated with an increase of plasma uric acid level (P = 5 x 10(-4)) and urea cycle metabolites. Decreases of both systolic (P = 0.06) and diastolic (P = 0.04) blood pressure after amlodipine administration tended to associate with a decrease of plasma hexadecanedioate, a dicarboxylic fatty acid recently linked to blood pressure regulation. Conclusions Although this systematic metabolomics study failed to identify circulating metabolites convincingly predicting favorable antihypertensive response to four different drug classes, it provided accumulating evidence linking fatty acid metabolism to human hypertension.Peer reviewe

    Genome-wide association study of white-coat effect in hypertensive patients

    Get PDF
    Background: White-coat effect (WCE) confounds diagnosis and treatment of hypertension. The prevalence of white-coat hypertension is higher in Europe and Asia compared to other continents suggesting that genetic factors could play a role. Methods: To study genetic variation affecting WCE, we conducted a two-stage genome-wide association study involving 1343 Finnish subjects. For the discovery stage, we used Genetics of Drug Responsiveness in Essential Hypertension (GENRES) cohort (n = 206), providing the mean WCE values from up to four separate office/ambulatory recordings conducted on placebo. Associations with p values <1 × 10βˆ’5 were included in the replication step in three independent cohorts: Haemodynamics in Primary and Secondary Hypertension (DYNAMIC) (n = 182), Finn-Home study (n = 773) and Dietary, Lifestyle and Genetic Determinants of Obesity and Metabolic Syndrome (DILGOM) (n = 182). Results: No single nucleotide polymorphisms reached genome-wide significance for association with either systolic or diastolic WCE. However, two loci provided suggestive evidence for association. A known coronary artery disease risk locus rs2292954 in SPG7 associated with systolic WCE (discovery p value = 2.2 × 10βˆ’6, replication p value = 0.03 in Finn-Home, meta-analysis p value 2.6 × 10βˆ’4), and rs10033652 in RASGEF1B with diastolic WCE (discovery p value = 4.9 × 10βˆ’6, replication p value = 0.04 in DILGOM, meta-analysis p value = 5.0 × 10βˆ’3). Conclusion: This study provides evidence for two novel candidate genes, SPG7 and RASGEF1B, associating with WCE. Our results need to be validated in even larger studies carried out in other populations
    corecore