3,821 research outputs found

    Secondary arterial hypertension: when, who, and how to screen?

    Get PDF
    Secondary hypertension refers to arterial hypertension due to an identifiable cause and affects ∼5-10% of the general hypertensive population. Because secondary forms are rare and work up is time-consuming and expensive, only patients with clinical suspicion should be screened. In recent years, some new aspects gained importance regarding this screening. In particular, increasing evidence suggests that 24 h ambulatory blood pressure (BP) monitoring plays a central role in the work up of patients with suspected secondary hypertension. Moreover, obstructive sleep apnoea has been identified as one of the most frequent causes. Finally, the introduction of catheter-based renal denervation for the treatment of patients with resistant hypertension has dramatically increased the interest and the number of patients evaluated for renal artery stenosis. We review the clinical clues of the most common causes of secondary hypertension. Specific recommendations are given as to evaluation and treatment of various forms of secondary hypertension. Despite appropriate therapy or even removal of the secondary cause, BP rarely ever returns to normal with long-term follow-up. Such residue hypertension indicates either that some patients with secondary hypertension also have concomitant essential hypertension or that irreversible vascular remodelling has taken place. Thus, in patients with potentially reversible causes of hypertension, early detection and treatment are important to minimize/prevent irreversible changes in the vasculature and target organ

    Novel platinum agents and mesenchymal stromal cells for thoracic malignancies : state of the art and future perspectives

    Get PDF
    Introduction: Non-small cell lung cancer and malignant pleural mesothelioma represent two of the most intriguing and scrutinized thoracic malignancies, presenting interesting perspectives of experimental development and clinical applications. Areas covered: In advanced non-small cell lung cancer, molecular targeted therapy is the standard firstline treatment for patients with identified driver mutations; on the other hand, chemotherapy is the standard treatment for patients without EGFR mutations or ALK rearrangement or those with unknown mutation status. Once considered an ineffective therapy in pulmonary neoplasms, immunotherapy has been now established as one of the most promising therapeutic options. Mesenchymal stromal cells are able to migrate specifically toward solid neoplasms and their metastatic localizations when injected intravenously. This peculiar cancer tropism has opened up an emerging field to use them as vectors to deliver antineoplastic drugs for targeted therapies. Expert opinion: Molecular targeted therapy and immunotherapy are the new alternatives to standard chemotherapy. Mesenchymal stromal cells are a new promising tool in oncology and\u2014although not yet utilized in the clinical practice, we think they will represent another main tool for cancer therapy and will probably play a leading role in the field of nanovectors and molecular medicine

    Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds.

    Get PDF
    Aquaculture is one of the world’s fastest growing food-producing sectors, providing more than half of all fish consumed globally for human nutrition. However, to maintain such growth and meet the increasing demand for aquatic food, sustainable raw materials for fish feeds are needed. In this regard, insects represent one of the most promising alternatives to fish meal (FM) protein source for use in aquafeeds. In addition to protein, insects contain bioactive compounds, such as chitin, which is a natural polysaccharide abundantly present in the pupal exuviae of some insects. Studies have shown that dietary chitin or its derivate chitosan acts as a prebiotic thus modulating the gut microbial communities of fish. Accordingly, the present study aimed to evaluate the effect of two waste products rich in chitin, i.e., shrimp head meal (SHM), and insect (Hermetia illucens) pupal exuviae on the gut microbiota of rainbow trout (Oncorhynchus mykiss). Three isoproteic, isolipidic, and isoenergetic diets containing either FM, SHD, or a combination of FM and 1.6% of pupal exuviae meal (PEM) were tested through a 91-day feeding trial. At the end of the experiment, no differences in final mean body weight, specific growth rate, and feed conversion ratio values were observed between fish experimental groups. Mortality was <1% and it did not correlate with diet for the entire duration of the trial. However, a modulatory effect of dietary pupal exuviae on fish gut microbiota was detected. Indeed, gut bacterial species richness improved by including insect exuviae. In particular, Firmicutes and Actinobacteria phyla, mainly represented by Bacillus, Facklamia, Brevibacterium, and Corynebacterium genera, were enriched in trout receiving pupal exuviae. These genera are chitinolytic and shortchain fatty acids (SCFAs)-producing bacteria. SCFAs production was confirmed by gas chromatography analysis, which detected the highest amount of butyrate in feces of trout fed with pupal exuviae meal. Functional inference analysis of intestinal microbiota using PICRUST metagenome prediction tool, showed differences in response to diet. In particular, eleven pathways were significantly different between control fish (FM) and fish fed the PEM diet, whereas twenty functional traits were significantly different between the FM and SHM fish groups. Overall, our data confirmed that chitin from insect’s pupal exuviae represents a promising functional ingredient, better than SHM, for positively modulating gut microbiota communities of rainbow trout

    Nanosensors for cancer detection.

    Get PDF
    Cancer is a major burden in today's society and one of the leading causes of death in industrialised countries. Various avenues for the detection of cancer exist, most of which rely on standard methods, such as histology, ELISA, and PCR. Here we put the focus on nanomechanical biosensors derived from atomic force microscopy cantilevers. The versatility of this novel technology has been demonstrated in different applications and in some ways surpasses current technologies, such as microarray, quartz crystal microbalance and surface plasmon resonance. The technology enables label free biomarker detection without the necessity of target amplification in a total cellular background, such as BRAF mutation analysis in malignant melanoma. A unique application of the cantilever array format is the analysis of conformational dynamics of membrane proteins associated to surface stress changes. Another development is characterisation of exhaled breath which allows assessment of a patient's condition in a non-invasive manner

    Resistant hypertension: what the cardiologist needs to know

    Get PDF
    Treatment-resistant hypertension (TRH) affects between 3 and 30% of hypertensive patients, and its presence is associated with increased cardiovascular morbidity and mortality. Until recently, the interest on these patients has been limited, because providing care for them is difficult and often frustrating. However, the arrival of new treatment options [i.e. catheter-based renal denervation (RDN) and baroreceptor stimulation] has revitalized the interest in this topic. The very promising results of the initial uncontrolled studies on the blood pressure (BP)-lowering effect of RDN in TRH seemed to suggest that this intervention might represent an easy solution for a complex problem. However, subsequently, data from controlled studies have tempered the enthusiasm of the medical community (and the industry). Conversely, these new studies emphasized some seminal aspects on this topic: (i) the key role of 24 h ambulatory BP and arterial stiffness measurement to identify ‘true' resistant patients; (ii) the high prevalence of secondary hypertension among this population; and (iii) the difficulty to identify those patients who may profit from device-based interventions. Accordingly, for those patients with documented TRH, the guidelines suggest to refer them to a hypertension specialist/centre in order to perform adequate work-up and treatment strategies. The aim of this review is to provide guidance for the cardiologist on how to identify patients with TRH and elucidate the prevailing underlying pathophysiological mechanism(s), to define a strategy for the identification of patients with TRH who may benefit from device-based interventions and discuss results and limitations of these interventions, and finally to briefly summarize the different drug-based treatment strategie

    Intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) may be improved by feeding a Hermetia illucens meal/low-fishmeal diet.

    Get PDF
    With demands and reliance on aquaculture still growing, there are various challenges to allow sustainable growth and the shift from fishmeal (FM) to other protein sources in aquafeed formulations is one of the most important. In this regard, interest in the use of insect meal (IM) in aquafeeds has grown rapidly. Accordingly, the aim of the present study was to assess the effects of dietary IM from Hermetia illucens (Hi) larvae included in a low-FM diet on gut microbial communities of rainbow trout (Oncorhynchus mykiss), in terms of both composition and function of microbiome. A feeding trial was conducted using 192 trout of about 100-g mean initial weight. Fish were fed in quadruplicate (4 tanks/diet) for 131 days with two diets: the control (Ctrl) contained 20% of FM as well as other protein sources, whereas the Hi diet contained 15% of Hi larvae meal to replace 50% of the FM contained in the Ctrl diet. High-throughput sequencing of 16S rRNA gene was used to identify the major feed and gut bacterial taxa, whereas Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis was performed on gut bacterial genomes to identify the major active biological pathways. The inclusion of IM led to an increase in Firmicutes, mainly represented by Bacilli class and to a drastic reduction of Proteobacteria. Beneficial genera, such as Lactobacillus and Bacillus, were enriched in the gut of fish fed with the Hi diet, whereas the number of bacteria assigned to the pathogenic Aeromonas genus was drastically reduced in the same fish group. The metagenome functional data provided evidence that dietary IM inclusion can shape the metabolic activity of trout gut microbiota. In particular, intestinal microbiome of fish fed with IM may have the capacity to improve dietary carbohydrate utilization. Therefore, H. illucens meal is a promising protein source for trout nutrition, able to modulate gut microbial community by increasing the abundance of some bacteria taxa that are likely to play a key role in fish health

    Next generation sequencing for gut microbiome characterization in rainbow trout (Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources

    Get PDF
    Animal by-product meals from the rendering industry could provide a sustainable and commercially viable alternative to fishmeal (FM) in aquaculture, as they are rich in most essential amino acids and contain important amounts of water-soluble proteins that improve feed digestibility and palatability. Among them, poultry by-product meal (PBM) have given encouraging results in rainbow trout (Oncorhynchus mykiss). However, the introduction of new ingredients in the diet needs to be carefully evaluated since diet is one of the main factors affecting the gut microbiota, which is a complex community that contributes to host metabolism, nutrition, growth, and disease resistance. Accordingly, we investigated the effects of partial replacement of dietary FM with a mix of animal by-product meals and plant proteins on intestinal microbiota composition of rainbow trout in relation to growth and feeding efficiency parameters. We used 1540 trout with an initial mean body weight of 94.6 +/- 14.2 g. Fish were fed for 12 weeks with 7 different feed formulations. The growth data showed that trout fed on diets rich in animal by-product meals grew as well as fish fed on control diet, which was rich in FM (37.3%) and PBM-free. High-throughput 16S rRNA gene amplicon sequencing (MiSeq platform, Illumina) was utilised to study the gut microbial community profile. After discarding Cyanobacteria (class Chloroplast) and mitochondria reads a total of 2,701,274 of reads taxonomically classified, corresponding to a mean of 96,474 +/- 68,056 reads per sample, were obtained. Five thousand three hundred ninety-nine operational taxonomic units (OTUs) were identified, which predominantly mapped to the phyla of Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The ratio between vegetable and animal proteins proved to play a central role in determining microbiome profiles and Firmicutes and Proteobacteria phyla were particularly discriminatory for diet type in trout. Plant ingredients favoured a higher Firmicutes: Proteobacteria ratio than animal proteins. Acceptable abundance of Firmicutes was guaranteed by including at least 25% of vegetable proteins in the diet regardless of animal protein source and percentage. In summary animal by-product meals, as replacements to FM, gave good results in terms of growth performances and did not induce significant changes in gut microbial richness, thus proving to be a suitable protein source for use in rainbow trout aqua feed

    Cardiovascular dysfunction in children conceived by assisted reproductive technologies

    Get PDF
    Epidemiological studies demonstrate a relationship between pathological events during foetal development and future cardiovascular risk and the term ‘foetal programming of cardiovascular disease' has been coined to describe this phenomenon. The use of assisted reproductive technologies (ARTs) is growing exponentially and 2-5% of children are now born by this procedure. Emerging evidence indicates that ART represents a novel important example of foetal programming. Assisted reproductive technology may modify the cardiovascular phenotype in two ways: (i) ART involves manipulation of the early embryo which is exquisitely sensitive to environmental insults. In line with this concern, ART alters vascular and cardiac function in children and studies in mice show that ART alters the cardiovascular phenotype by epigenetic alterations related to suboptimal culture conditions. (ii) Assisted reproductive technology markedly increases the risk of foetal insults that augment cardiovascular risk in naturally conceived individuals and are expected to have similar consequences in the ART population. Given the young age of the ART population, it will take another 20-30 years before data on cardiovascular endpoints will be available. What is clear already, however, is that ART emerges as an important cardiovascular risk factor. This insight requires us to revise notions on ART's long-term safety and to engage on a debate on its future. There is an urgent need to better understand the mechanisms underpinning ART-induced alteration of the cardiovascular phenotype, improve the procedure and its long-term safety, and, while awaiting this aim, not to abandon medicine's fundamental principle of doing no harm (to future children) and use ART parsimoniousl
    corecore