248 research outputs found

    Development Of A Preadmission DVD to Educate Patients And Their Families About Stem Cell Transplant

    Get PDF

    Corpus Callosum Microstructural Changes Correlate with Cognitive Dysfunction in Early Stages of Relapsing-Remitting Multiple Sclerosis: Axial and Radial Diffusivities Approach

    Get PDF
    The corpus callosum is the largest fiber bundle in the central nervous system and it takes part in several cognitive pathways. It can be affected by multiple sclerosis (MS) early in the disease. DTI is capable of infering the microstructural organization of the white matter. The vectorial analysis of the DTI offers the more specific indices of axial diffusivity (AD) and radial diffusivity (RD), which have shown to be useful to discriminate myelin damage from axon loss, respectively. This study presents DTI results (mean diffusivity (MD), fractional anisotropy (FA), RD, and AD) of 23 relapsing-remitting MS patients and its correlation with cognitive performance. There were 47.8% of cognitive impaired patients (MS CI). We found signs of demyelination, reflected by increased RD, and incipient axon loss, reflected by AD increase, which was slightly higher in the MS CI. The cognitive changes correlated with the DTI parameters, suggesting that loss of complexity in CC connections can impair neural conduction. Thus, cognitive impairment can be related to callosal disconnection, and DTI can be a promising tool to evaluate those changes

    Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen

    Get PDF
    This paper describes a novel method of sample preparation for the determination of trace concentrations of polycyclic aromatic hydrocarbons (PAHs) in high-boiling petroleum products. Limits of quantitation of the investigated PAHs in materials of this type range from tens of nanograms per kilogram to <20 μg/kg. The studies revealed that in order to separate most of interferences from the analytes without a significant loss of PAHs, it is necessary to use size exclusion chromatography as the first step of sample preparation, followed by adsorption using normal-phase liquid chromatography. The use of orthogonal separation procedure described in the paper allows the isolation of only a group of unsubstituted and substituted aromatic hydrocarbons with a specific range of molar mass. The lower the required limit of quantitation of PAHs, the larger is the scale of preparative liquid chromatography in both steps of sample preparation needed. The use of internal standard allows quantitative results to be corrected for the degree of recovery of PAHs during the sample preparation step. Final determination can be carried out using HPLC-FLD, GC-MS, or HPLC-UV–VIS/DAD. The last technique provides a degree of identification through the acquired UV–VIS spectra

    Prognostic significance of downregulated expression of the candidate tumour suppressor gene SASH1 in colon cancer

    Get PDF
    The gene SASH1 (SAM- and SH3-domain containing 1) has originally been identified as a candidate tumour suppressor gene in breast cancer. SASH1 is a member of the SH3-domain containing expressed in lymphocytes (SLY1) gene family that encodes signal adapter proteins composed of several protein–protein interaction domains. The other members of this family are expressed mainly in haematopoietic cells, whereas SASH1 shows ubiquitous expression. We have used quantitative real-time PCR to investigate the expression of SASH1 in tissue samples from 113 patients with colon carcinoma, and compared the expression with 15 normal colon tissue samples. Moreover, nine benign adenomas and 10 liver metastases were analysed. Expression levels of SASH1 were strongly and significantly reduced in colon cancer of UICC stage II, III, and IV, as well as in liver metastases. Moreover, SASH1 was also found to be downregulated on protein levels by immunoblot analysis. However, SASH1 expression was not significantly deregulated in precancerous adenomas and in earlier stage lesions (UICC I). Overall, 48 out of 113 primary colon tumours showed SASH1 expression that was at least 10-fold lower than the levels found in normal colon tissue. Downregulation of SASH1 expression was correlated with the formation of metachronous distant metastasis, and multivariate analysis identified SASH1 downregulation as an independent negative prognostic parameter for patient survival. This study demonstrates for the first time that expression of a member of the SLY1-gene family has prognostic significance in human cancer

    Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response

    Get PDF
    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process

    Three-gene predictor of clinical outcome for gastric cancer patients treated with chemotherapy

    Get PDF
    To identify transcriptional profiles predictive of the clinical benefit of cisplatin and fluorouracil (CF) chemotherapy to gastric cancer patients, endoscopic biopsy samples from 96 CF-treated metastatic gastric cancer patients were prospectively collected before therapy and analyzed using high-throughput transcriptional profiling and array comparative genomic hybridization. Transcriptional profiling identified 917 genes that are correlated with poor patient survival after CF at P<0.05 (poor prognosis signature), in which protein synthesis and DNA replication/recombination/repair functional categories are enriched. A survival risk predictor was then constructed using genes, which are included in the poor prognosis signature and are contained within identified genomic amplicons. The combined expression of three genes—MYC, EGFR and FGFR2—was an independent predictor for overall survival of 27 CF-treated patients in the validation set (adjusted P=0.017), and also for survival of 40 chemotherapy-treated gastric cancer patients in a published data set (adjusted P=0.026). Thus, combined expression of MYC, EGFR and FGFR2 is predictive of poor survival in CF-treated metastatic gastric cancer patients

    Tobacco use induces anti-apoptotic, proliferative patterns of gene expression in circulating leukocytes of Caucasian males

    Get PDF
    Abstract Background Strong epidemiologic evidence correlates tobacco use with a variety of serious adverse health effects, but the biological mechanisms that produce these effects remain elusive. Results We analyzed gene transcription data to identify expression spectra related to tobacco use in circulating leukocytes of 67 Caucasian male subjects. Levels of cotinine, a nicotine metabolite, were used as a surrogate marker for tobacco exposure. Significance Analysis of Microarray and Gene Set Analysis identified 109 genes in 16 gene sets whose transcription levels were differentially regulated by nicotine exposure. We subsequently analyzed this gene set by hyperclustering, a technique that allows the data to be clustered by both expression ratio and gene annotation (e.g. Gene Ontologies). Conclusion Our results demonstrate that tobacco use affects transcription of groups of genes that are involved in proliferation and apoptosis in circulating leukocytes. These transcriptional effects include a repertoire of transcriptional changes likely to increase the incidence of neoplasia through an altered expression of genes associated with transcription and signaling, interferon responses and repression of apoptotic pathways

    Expression Profiling of Rectal Tumors Defines Response to Neoadjuvant Treatment Related Genes

    Get PDF
    To date, no effective method exists that predicts the response to preoperative chemoradiation (CRT) in locally advanced rectal cancer (LARC). Nevertheless, identification of patients who have a higher likelihood of responding to preoperative CRT could be crucial in decreasing treatment morbidity and avoiding expensive and time-consuming treatments. The aim of this study was to identify signatures or molecular markers related to response to pre-operative CRT in LARC. We analyzed the gene expression profiles of 26 pre-treatment biopsies of LARC (10 responders and 16 non-responders) without metastasis using Human WG CodeLink microarray platform. Two hundred and fifty seven genes were differentially over-expressed in the responder patient subgroup. Ingenuity Pathway Analysis revealed a significant ratio of differentially expressed genes related to cancer, cellular growth and proliferation pathways, and c-Myc network. We demonstrated that high Gng4, c-Myc, Pola1, and Rrm1 mRNA expression levels was a significant prognostic factor for response to treatment in LARC patients (p<0.05). Using this gene set, we were able to establish a new model for predicting the response to CRT in rectal cancer with a sensitivity of 60% and 100% specificity. Our results reflect the value of gene expression profiling to gain insight about the molecular pathways involved in the response to treatment of LARC patients. These findings could be clinically relevant and support the use of mRNA levels when aiming to identify patients who respond to CRT therapy.C, CC and AB were supported by projects CTS2200 and PI-0710-2013 of Junta de Andalucía, TIN2013-41990-R of Programa Estatal I+D+i MINECO, and GREIB PYR_2010-02 and 2010_05 of University of Granada

    Genomic and oncoproteomic advances in detection and treatment of colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>We will examine the latest advances in genomic and proteomic laboratory technology. Through an extensive literature review we aim to critically appraise those studies which have utilized these latest technologies and ascertain their potential to identify clinically useful biomarkers.</p> <p>Methods</p> <p>An extensive review of the literature was carried out in both online medical journals and through the Royal College of Surgeons in Ireland library.</p> <p>Results</p> <p>Laboratory technology has advanced in the fields of genomics and oncoproteomics. Gene expression profiling with DNA microarray technology has allowed us to begin genetic profiling of colorectal cancer tissue. The response to chemotherapy can differ amongst individual tumors. For the first time researchers have begun to isolate and identify the genes responsible. New laboratory techniques allow us to isolate proteins preferentially expressed in colorectal cancer tissue. This could potentially lead to identification of a clinically useful protein biomarker in colorectal cancer screening and treatment.</p> <p>Conclusion</p> <p>If a set of discriminating genes could be used for characterization and prediction of chemotherapeutic response, an individualized tailored therapeutic regime could become the standard of care for those undergoing systemic treatment for colorectal cancer. New laboratory techniques of protein identification may eventually allow identification of a clinically useful biomarker that could be used for screening and treatment. At present however, both expression of different gene signatures and isolation of various protein peaks has been limited by study size. Independent multi-centre correlation of results with larger sample sizes is needed to allow translation into clinical practice.</p
    corecore