1,333 research outputs found
Gradual acquisition of immunity to severe malaria with increasing exposure
Previous analyses have suggested that immunity to non-cerebral severe malaria due to Plasmodium falciparum is acquired after only a few infections, whereas longitudinal studies show that some children experience multiple episodes of severe disease, suggesting that immunity may not be acquired so quickly. We fitted a mathematical model for the acquisition and loss of immunity to severe disease to the age distribution of severe malaria cases stratified by symptoms from a range of transmission settings in Tanzania, combined with data from several African countries on the age distribution and overall incidence of severe malaria. We found that immunity to severe disease was acquired more gradually with exposure than previously thought. The model also suggests that physiological changes, rather than exposure, may alter the symptoms of disease with increasing age, suggesting that a later age at infection would be associated with a higher proportion of cases presenting with cerebral malaria regardless of exposure. This has consequences for the expected pattern of severe disease as transmission changes. Careful monitoring of the decline in immunity associated with reduced transmission will therefore be needed to ensure rebound epidemics of severe and fatal malaria are avoided
10C continued: A deeper radio survey at 15.7 GHz
We present deep 15.7-GHz observations made with the Arcminute Microkelvin
Imager Large Array in two fields previously observed as part of the Tenth
Cambridge (10C) survey. These observations allow the source counts to be
calculated down to 0.1 mJy, a factor of five deeper than achieved by the 10C
survey. The new source counts are consistent with the extrapolated fit to the
10C source count, and display no evidence for either steepening or flattening
of the counts. There is thus no evidence for the emergence of a significant new
population of sources (e.g. starforming) at 15.7 GHz flux densities above 0.1
mJy, the flux density level at which we expect starforming galaxies to begin to
contribute. Comparisons with the de Zotti et al. model and the SKADS Simulated
Sky show that they both underestimate the observed number of sources by a
factor of two at this flux density level. We suggest that this is due to the
flat-spectrum cores of radio galaxies contributing more significantly to the
counts than predicted by the models.We thank the staff of the Mullard Radio Astronomy Observatory for maintaining and operating AMI. IHW and CR acknowledge Science and Technology Facilities Council studentships. IHW acknowledges support from the Square Kilometre Array South Africa project and the South African National Research Foundation. This research has made use of NASA’s Astrophysics Data System. We thank the referee for their careful reading of this manuscript.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv296
Ebola virus glycoprotein stimulates IL-18 dependent natural killer cell responses
BACKGROUND: NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells; these functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS: The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analysed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen, and in response to in vitro Ebola glycoprotein stimulation of PBMC isolated before and after vaccination. RESULTS: We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein-induced activation of NK cells was dependent on accessory cells and TLR-4-dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whilst IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION: This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola GP. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02313077. FUNDING: U.K. Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (Grant 115861) and Crucell Holland (now Janssen Vaccines & Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA)
Calorie Restriction Attenuates Terminal Differentiation of Immune Cells
Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a-CD44locells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b-CD27+cells and correspondingly lower proportions of highly differentiated CD11b+CD27-NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations
Tendinopathy—from basic science to treatment
Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy
Gene Function Classification Using Bayesian Models with Hierarchy-Based Priors
We investigate the application of hierarchical classification schemes to the
annotation of gene function based on several characteristics of protein
sequences including phylogenic descriptors, sequence based attributes, and
predicted secondary structure. We discuss three Bayesian models and compare
their performance in terms of predictive accuracy. These models are the
ordinary multinomial logit (MNL) model, a hierarchical model based on a set of
nested MNL models, and a MNL model with a prior that introduces correlations
between the parameters for classes that are nearby in the hierarchy. We also
provide a new scheme for combining different sources of information. We use
these models to predict the functional class of Open Reading Frames (ORFs) from
the E. coli genome. The results from all three models show substantial
improvement over previous methods, which were based on the C5 algorithm. The
MNL model using a prior based on the hierarchy outperforms both the
non-hierarchical MNL model and the nested MNL model. In contrast to previous
attempts at combining these sources of information, our approach results in a
higher accuracy rate when compared to models that use each data source alone.
Together, these results show that gene function can be predicted with higher
accuracy than previously achieved, using Bayesian models that incorporate
suitable prior information
The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology.
The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8(+) T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8(+) T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites
Atomoxetine improves patient and family coping in attention deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled study in Swedish children and adolescents
This 10-week study assessed the efficacy of atomoxetine in combination with psychoeducation compared to placebo and psychoeducation in the improvement of Quality of Life in Swedish stimulant-naive children and adolescents with attention deficit/hyperactivity disorder. A total of 99 patients were treated with atomoxetine (49 patients) or placebo (50 patients) for 10 weeks and assessed regarding broader areas of functioning using the Quality of Life measures Child Health and Illness Profile-Child Edition (CHIP-CE), Family Strain Index [FSI; equivalent to the Family Burden of Illness Module used in the study], Appraisal of Stress in Child-Rearing (ASCR), Five to fifteen (FTF), “I think I am” (“Jag tycker jag är”), and Children’s Depression Rating Scale-Revised (CDRS-R) before and after the active treatment phase. Simultaneously, the patients’ parents participated in a 4-session psychoeducation program. A statistically significant difference in favor of atomoxetine was seen in the improvement from baseline to study endpoint for the CHIP-CE domains “Achievement” and “Risk avoidance”, for the FSI total score, for the ASCR section (I) domain “Child as a burden”, for all FTF domains except for “Language and Speech”, and for the CDRS-R total score. No difference between treatment groups was observed in the patient-assessed evaluation of self-esteem using the “I think I am” scale. Atomoxetine combined with psychoeducation had a positive effect on various everyday coping abilities of the patients as well as their families during 10 weeks of treatment, whereas the patients’ self-image and the parents’ image of the climate in the family were not significantly improved
Continuing intense malaria transmission in northern Uganda
This is the final version. Available from the American Society of Tropical Medicine and Hygiene via the DOI in this record. Recent reports of reductions in malaria transmission in several African countries have resulted in optimism that malaria can be eliminated in parts of Africa where it is currently endemic. It is not known whether these trends are global or whether they are also present in areas where political instability has hindered effective malaria control. We determined malaria parasite carriage and age-dependent antibody responses to Plasmodium falciparum antigens in cross-sectional surveys in Apac, northern Uganda that was affected by political unrest. Under-five parasite prevalence was 55.8% (115/206) by microscopy and 71.9% (41/57) by polymerase chain reaction. Plasmodium ovale alone, or as a co-infection, was detected in 8.6% (12/139) and Plasmodium malariae in 4.3% (6/139) of the infections. Age seroprevalence curves gave no indication of recent changes in malaria transmission intensity. Malaria control remains a tremendous challenge in areas that have not benefited from large-scale interventions, illustrated here by the district of Apac.European Community’s Seventh Framework Programme [FP7/2007-2013
Non-variant specific antibody responses to the C-terminal region of merozoite surface protein-1 of Plasmodium falciparum (PfMSP-119) in Iranians exposed to unstable malaria transmission
<p>Abstract</p> <p>Background</p> <p>The C-terminal region of <it>Plasmodium falciparum </it>merozoite surface protein-1 (PfMSP-1<sub>19</sub>) is a leading malaria vaccine candidate antigen. However, the existence of different variants of this antigen can limit efficacy of the vaccine development based on this protein. Therefore, in this study, the main objective was to define the frequency of PfMSP-1<sub>19 </sub>haplotypes in malaria hypoendemic region of Iran and also to analyse cross-reactive and/or variant-specific antibody responses to four PfMSP-1<sub>19 </sub>variant forms.</p> <p>Methods</p> <p>The PfMSP-1<sub>19 </sub>was genotyped in 50 infected subjects with <it>P. falciparum </it>collected during 2006-2008. Four GST-PfMSP-1<sub>19 </sub>variants (E/TSR/L, E/TSG/L, E/KNG/F and Q/KNG/L) were produced in <it>Escherichia coli </it>and naturally occurring IgG antibody to these proteins was evaluated in malaria patients' sera (n = 50) using ELISA. To determine the cross-reactivity of antibodies against each PfMSP-1<sub>19 </sub>variant in <it>P. falciparum-</it>infected human sera, an antibody depletion assay was performed in eleven corresponding patients' sera.</p> <p>Results</p> <p>Sequence data of the PfMSP-1<sub>19 </sub>revealed five variant forms in which the haplotypes Q/KNG/L and Q/KNG/F were predominant types and the second most frequent haplotype was E/KNG/F. In addition, the prevalence of IgG antibodies to all four PfMSP-1<sub>19 </sub>variant forms was equal and high (84%) among the studied patients' sera. Immunodepletion results showed that in Iranian malaria patients, Q/KNG/L variant could induce not only cross-reactive antibody responses to other PfMSP-1<sub>19 </sub>variants, but also could induce some specific antibodies that are not able to recognize the E/TSG/L or E/TSR/L variant forms.</p> <p>Conclusion</p> <p>The present findings demonstrated the presence of non-variant specific antibodies to PfMSP-1<sub>19 </sub>in Iranian falciparum malaria patients. This data suggests that polymorphism in PfMSP-1<sub>19 </sub>is less important and one variant of this antigen, particularly Q/KNG/L, may be sufficient to be included in PfMSP-1<sub>19</sub>-based vaccine.</p
- …