910 research outputs found
The Ecology of Water Areas Associated with Coal Strip-Mined Lands in Ohio
Author Institution: Department of Biology, Kent State University, Kent, Ohi
Primary Productivity-Phytoplankton Relationships, Hodgson Lake, Portage County, Ohio
Author Institution: Department of Biological Sciences, Kent State University, Kent, OhioPrimary productivity-phytoplankton relationships were studied for one year (1963-64) in Hodgson Lake, Portage County, Ohio. The lake was found to be a ''blue-greendiatom'' reservoir of moderate productivity, but containing a large phytoplankton standing crop, dominated by the cyanophycean, Oscillatoria rubescens Decandole. Average cell volumes ranged from 1.4 mm3 liter-1 in September to approximately 88.6 mm3liter-1 in June, over 80 percent of which were 0. rubescens. Diatoms, including Cyclotella sp, Fragilaria sp. Asterionella formosa Hass, and Synedra delicatissima W. Sm., usually accounted for <10 percent of the total cell volume. Photosynthesis ranged from 4-5 mgC m-2 day-1 during the winter to approximately 2600-2700 mgC m-2 day-1 in June and October, with an annual mean of 847.5 mgC m~2 day"1. Photosynthesis per unit cell volume ranged from <1ugC day-1 mm-3 during the winter to 172.8 gC day-1 mm-3 in October, averaging 10.5 ugC day-1 mm-3 annually
Both D- and L-glucose polyphosphates mimic D-myo-inositol 1,4,5-trisphosphate: new synthetic agonists and partial agonists at the Ins(1,4,5)P3 receptor
Chiral sugar derivatives are potential cyclitol surrogates of the Ca2+-mobilizing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Six novel polyphosphorylated analogues derived from both d- and l-glucose were synthesized. Binding to Ins(1,4,5)P3 receptors [Ins(1,4,5)P3R] and the ability to release Ca2+ from intracellular stores via type 1 Ins(1,4,5)P3Rs were investigated. β-d-Glucopyranosyl 1,3,4-tris-phosphate, with similar phosphate regiochemistry and stereochemistry to Ins(1,4,5)P3, and α-d-glucopyranosyl 1,3,4-tris-phosphate are full agonists, being equipotent and 23-fold less potent than Ins(1,4,5)P3, respectively, in Ca2+-release assays and similar to Ins(1,4,5)P3 and 15-fold weaker in binding assays. They can be viewed as truncated analogues of adenophostin A and refine understanding of structure-activity relationships for this Ins(1,4,5)P3R agonist. l-Glucose-derived ligands, methyl α-l-glucopyranoside 2,3,6-trisphosphate and methyl α-l-glucopyranoside 2,4,6-trisphosphate, are also active, while their corresponding d-enantiomers, methyl α-d-glucopyranoside 2,3,6-trisphosphate and methyl α-d-glucopyranoside 2,4,6-trisphosphate, are inactive. Interestingly, both l-glucose-derived ligands are partial agonists: they are among the least efficacious agonists of Ins(1,4,5)P3R yet identified, providing new leads for antagonist development
An ATP-responsive metabolic cassette comprised of inositol tris/tetrakisphosphate kinase 1 (ITPK1) and inositol pentakisphosphate 2-kinase (IPK1) buffers diphosphosphoinositol phosphate levels
Inositol polyphosphates are ubiquitous molecular signals in metazoans, as are their pyrophosphorylated derivatives that bear a so-called 'high-energy' phosphoanhydride bond. A structural rationale is provided for the ability of Arabidopsis inositol tris/tetrakisphosphate kinase 1 to discriminate between symmetric and enantiomeric substrates in the production of diverse symmetric and asymmetric myo-inositol phosphate and diphospho-myo-inositol phosphate (inositol pyrophosphate) products. Simple tools are applied to chromatographic resolution and detection of known and novel diphosphoinositol phosphates without resort to radiolabeling approaches. It is shown that inositol tris/tetrakisphosphate kinase 1 and inositol pentakisphosphate 2-kinase comprise a reversible metabolic cassette converting Ins(3,4,5,6)P4 into 5-InsP7 and back in a nucleotide-dependent manner. Thus, inositol tris/tetrakisphosphate kinase 1 is a nexus of bioenergetics status and inositol polyphosphate/diphosphoinositol phosphate metabolism. As such, it commands a role in plants that evolution has assigned to a different class of enzyme in mammalian cells. The findings and the methods described will enable a full appraisal of the role of diphosphoinositol phosphates in plants and particularly the relative contribution of reversible inositol phosphate hydroxykinase and inositol phosphate phosphokinase activities to plant physiology
Interactions of Bacillus Mojavensis and Fusarium Verticillioides With a Benzoxazolinone (Boa) and Its Transformation Product, Apo
En:Journal of Chemical Ecology (2007, vol. 33, n. 10, p. 1885-1897)The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study.
=580 $aEn:Journal of Chemical Ecolog
Epsilon Metal Summary Report FY 2011
The Epsilon-metal ({var_epsilon}-metal) phase was selected in FY 2009 as a potential waste form to for immobilizing the noble metals found in the undissolved solids + aqueous stream, and the soluble Tc from ion-exchange process, each resulting from proposed aqueous reprocessing. {var_epsilon}-metal phase is observed in used nuclear fuel and the natural reactors of Oklobono in Gabon, where the long-term corrosion behavior was demonstrated. This makes {var_epsilon}-metal a very attractive waste form. Last fiscal year, {var_epsilon}-metal was successfully fabricated by combining the five-metals, Mo, Ru, Rh, Pd and Re (surrogate for Tc), into pellets followed by consolidation with an arc melter. The arc melter produced fully dense samples with the epsilon structure. However, some chemistry differences were observed in the microstructure that resulted in regions rich in Re and Mo, and others rich in Pd, while Ru and Rh remained fairly constant throughout. This year, thermal stability (air), and corrosion testing of the samples fabricated by arc melting were the main focus for experimental work. Thermal stability was measured with a differential scanning calorimeter - thermogravimetric analyzer, by both ramp heating as well as step heating. There is clear evidence during the ramp heating experiment of an exothermic event + a weight loss peak both beginning at {approx}700 C. Step heating showed an oxidation event at {approx}690 C with minimal weight gain that occurs just before the weight loss event at 700 C. The conclusion being that the e-metal begins to oxidize and then become volatile. These findings are useful for considering the effects of voloxidation process. Three different pellets were subjected to electrochemical testing to study the corrosion behavior of the epsilon-metal phase in various conditions, namely acidic, basic, saline, and inert. Test was done according to an interim procedure developed for the alloy metal waste form. First an open circuit potential was measured, followed by linear polarization sweeps. The linear polarization sweep range was the Tafel equation was fit to the linear polarization sweep data to determine the corrosion rate of each pellet in each test solution. The average calculated corrosion rates of the three pellets according to solution conditions were: -1.91 x 10{sup -4} mm/yr (0.001 M NaOH), -1.48 x 10{sup -3} mm/yr (0.01 M NaCl), -8.77 x 10{sup -4} mm/yr (0.001 M H{sub 2}SO{sub 4}), -2.09 x 10{sup -3} mm/yr (0.001 M NaOH + 0.01 M NaCl), and -1.54 x 10{sup -3} mm/yr (0.001 M H{sub 2}SO{sub 4} + 0.01 M NaCl). Three single-pass flow through (SPFT) test were conducted at a flow rate of 10 ml/day, at 90 C, and pH of 2.5, 7.0, and 9.0 for up to 322 days. Results of the tests indicate that dissolution rates were 5 x 10{sup -4} g m{sup 2} d{sup -1} at pH 9.0, 1.2 x 10{sup -4} g m{sup -2} d{sup -1} at pH 7.0, and 2 x 10{sup -4} g m{sup -2} d{sup -1} at pH 2.5. The sample used for the pH 7.0 SPFT test contains extra Re compared to samples used for the other two SPFT test, which came from a single pellet. The corrosion data measured this year indicate that the {var_epsilon}-metal phase is chemically durable. The two chemically different phases, but structurally the same, behave differently during dissolution according to the microstructure changes observed in both the electrochemical and in SPFT test. Characterization of the test specimens after testing suggests that the dissolution is complex and involves oxidative dissolution followed by precipitation of both oxide and metallic phases. These data suggest that the dissolution in the electrochemical and SPFT tests is different; a process that needs further investigation
Summary Report for the Development of Materials for Volatile Radionuclides
The materials development summarized here is in support of the Waste Forms campaign, Volatile Radionuclide task. Specifically, materials are being developed for the removal and immobilization of iodine and krypton, specifically 129I and 85Kr. During FY 2010, aerogel materials were investigated for removal and immobilization of 129I. Two aerogel formulations were investigated, one based on silica aerogels and the second on chalcogenides. For 85Kr, metal organic framework (MOF) structures were investigated
Regioisomeric family of novel fluorescent substrates for SHIP2
ABSTRACT: SHIP2 (SH2-domain containing inositol 5-phosphatase type 2) is a canonical 5-phosphatase which, through its catalytic action on PtdInsP3, regulates the PI3K/Akt pathway and metabolic action of insulin. It is a drug target but there is limited evidence of inhibition of SHIP2 by small molecules in the literature. With the goal to investigate inhibition, we report a homologous family of synthetic, chromophoric benzene phosphate substrates of SHIP2 that display the headgroup regiochemical hallmarks of the physiological inositide substrates that have proved difficult to crystallize with 5-phosphatases. Using time-dependent density functional theory (TD-DFT), we explore the intrinsic fluorescence of these novel substrates and show how fluorescence can be used to assay enzyme activity. The TD-DFT approach promises to inform rational design of enhanced active site probes for the broadest family of inositide-binding / metabolizing proteins, whilst maintaining the regiochemical properties of bona fide inositide substrates
Allosteric site on SHIP2 identified through fluorescent ligand screening and crystallography: a potential new target for intervention
Src Homology 2 domain-containing inositol phosphate phosphatase 2 (SHIP2) is one of ten human inositol phosphate 5-phosphatases. One of its physiological functions is dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4,5)P3. It is therefore a therapeutic target for pathophysiologies dependent on PtdIns(3,4,5)P3 and PtdIns(3,4)P2. Therapeutic interventions are limited by the dearth of crystallographic data describing ligand/inhibitor binding. An active site-directed fluorescent probe facilitated screening of compound libraries for SHIP2 ligands. With two additional orthogonal assays, several ligands including galloflavin were identified as low micromolar Ki inhibitors. One ligand, an oxo-linked ethylene-bridged dimer of benzene 1,2,4-trisphosphate, was shown to be an uncompetitive inhibitor that binds to a regulatory site on the catalytic domain. We posit that binding of ligands to this site restrains L4 loop motions that are key to interdomain communications that accompany high catalytic activity with phosphoinositide substrate. This site may, therefore, be a future druggable target for medicinal chemistry
Crystal structure and enzymology of Solanum tuberosum inositol tris/tetrakisphosphate kinase 1 (StITPK1)
Inositol phosphates and their pyrophosphorylated derivatives are responsive to the phosphate supply and are agents of phosphate homeostasis and other aspects of physiology. It seems likely that the enzymes that interconvert these signals work against the prevailing milieu of mixed populations of competing substrates and products. The synthesis of inositol pyrophosphates is mediated in plants by two classes of ATP-grasp fold kinase: PPIP5 kinases, known as VIH, and members of the inositol tris/tetrakisphosphate kinase (ITPK) family, specifically ITPK1/2. A molecular explanation of the contribution of ITPK1/2 to inositol pyrophosphate synthesis and turnover in plants is incomplete: the absence of nucleotide in published crystal structures limits the explanation of phosphotransfer reactions, and little is known of the affinity of potential substrates and competitors for ITPK1. Herein, we describe a complex of ADP and StITPK1 at 2.26 Ă… resolution and use a simple fluorescence polarization approach to compare the affinity of binding of diverse inositol phosphates, inositol pyrophosphates, and analogues. By simple HPLC, we reveal the novel catalytic capability of ITPK1 for different inositol pyrophosphates and show Ins(3,4,5,6)P4 to be a potent inhibitor of the inositol pyrophosphate-synthesizing activity of ITPK1. We further describe the exquisite specificity of ITPK1 for the myo-isomer among naturally occurring inositol hexakisphosphates
- …