6 research outputs found
High Purcell factor generation of indistinguishable on-chip single photons
On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot–photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates
Waveguide Coupled Resonance Fluorescence from On-Chip Quantum Emitter
Resonantly driven quantum emitters offer a very promising route to obtain highly coherent sources of single photons required for applications in quantum information processing (QIP). Realizing this for on-chip scalable devices would be important for scientific advances and practical applications in the field of integrated quantum optics. Here we report on-chip quantum dot (QD) resonance fluorescence (RF) efficiently coupled into a single-mode waveguide, a key component of a photonic integrated circuit, with a negligible resonant laser background and show that the QD coherence is enhanced by more than a factor of 4 compared to off-resonant excitation. Single-photon behavior is confirmed under resonant excitation, and fast fluctuating charge dynamics are revealed in autocorrelation g(2) measurements. The potential for triggered operation is verified in pulsed RF. These results pave the way to a novel class of integrated quantum-optical devices for on-chip quantum information processing with embedded resonantly driven quantum emitters
Waveguide Coupled Resonance Fluorescence from On-Chip Quantum Emitter
Resonantly driven quantum emitters
offer a very promising route to obtain highly coherent sources of
single photons required for applications in quantum information processing
(QIP). Realizing this for on-chip scalable devices would be important
for scientific advances and practical applications in the field of
integrated quantum optics. Here we report on-chip quantum dot (QD)
resonance fluorescence (RF) efficiently coupled into a single-mode
waveguide, a key component of a photonic integrated circuit, with
a negligible resonant laser background and show that the QD coherence
is enhanced by more than a factor of 4 compared to off-resonant excitation.
Single-photon behavior is confirmed under resonant excitation, and
fast fluctuating charge dynamics are revealed in autocorrelation g<sup>(2)</sup> measurements. The potential for triggered operation is
verified in pulsed RF. These results pave the way to a novel class
of integrated quantum-optical devices for on-chip quantum information
processing with embedded resonantly driven quantum emitters
Stratified analyses refine association between TLR7 rare variants and severe COVID-19
Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway