240 research outputs found

    Data-driven historical characterization of epilepsy-associated genes.

    Get PDF
    Many epilepsy-associated genes have been identified over the last three decades, revealing a remarkable molecular heterogeneity with the shared outcome of recurrent seizures. Information about the genetic landscape of epilepsies is scattered throughout the literature and answering the simple question of how many genes are associated with epilepsy is not straightforward. Here, we present a computationally driven analytical review of epilepsy-associated genes using the complete scientific literature in PubMed. Based on our search criteria, we identified a total of 738 epilepsy-associated genes. We further classified these genes into two Tiers. A broad gene list of 738 epilepsy-associated genes (Tier 2) and a narrow gene list composed of 143 epilepsy-associated genes (Tier 1). Our search criteria do not reflect the degree of association. The average yearly number of identified epilepsy-associated genes between 1992 and 2021 was 4.8. However, most of these genes were only identified in the last decade (2010–2019). Ion channels represent the largest class of epilepsy-associated genes. For many of these, both gain- and loss-of-function effects have been associated with epilepsy in recent years. We identify 28 genes frequently reported with heterogenous variant effects which should be considered for variant interpretation. Overall, our study provides an updated and manually curated list of epilepsy-related genes together with additional annotations and classifications reflecting the current genetic landscape of epilepsy

    Deep-Phenotyping the Less Severe Spectrum of PIGT Deficiency and Linking the Gene to Myoclonic Atonic Seizures

    Get PDF
    The two aims of this study were (i) to describe and expand the phenotypic spectrum of PIGT deficiency in affected individuals harboring the c.1582G>A; p.Val528Met or the c.1580A > G; p.Asn527Ser variant in either homozygous or compound heterozygous state, and (ii) to identify potential genotype-phenotype correlations and any differences in disease severity among individuals with and without the PIGT variants. The existing literature was searched to identify individuals with and without the two variants. A detailed phenotypic assessment was performed of 25 individuals (both novel and previously published) with the two PIGT variants. We compared severity of disease between individuals with and without these PIGT variants. Twenty-four individuals carried the PIGT variant Val528Met in either homozygous or compound heterozygous state, and one individual displayed the Asn527Ser variant in a compound heterozygous state. Disease severity in the individual with the Asn527Ser variant was compatible with that in the individuals harboring the Val528Met variant. While individuals without the Asn527Ser or Val528Met variant had focal epilepsy, profound developmental delay (DD), and risk of premature death, those with either of the two variants had moderate to severe DD and later onset of epilepsy with both focal and generalized seizures. Individuals homozygous for the Val528Met variant generally became seizure-free on monotherapy with antiepileptic drugs, compared to other PIGT individuals who were pharmaco-resistant. Two patients were diagnosed with myoclonic-atonic seizures, and a single patient was diagnosed with eyelid myoclonia. Our comprehensive analysis of this large cohort of previously published and novel individuals with PIGT variants broadens the phenotypical spectrum and shows that both Asn527Ser and Val528Met are associated with a milder phenotype and less severe outcome. Our data show that PIGT is a new candidate gene for myoclonic atonic epilepsy. Our genotype-phenotype correlation will be useful for future genetic counseling. Natural history studies of this mild spectrum of PIGT-related disorder may shed light on hitherto unknown aspects of this rare disorder

    The phenotypic presentation of adult individuals with SLC6A1-related neurodevelopmental disorders

    Get PDF
    IntroductionSLC6A1 is one of the most common monogenic causes of epilepsy and is a well-established cause of neurodevelopmental disorders. SLC6A1-neurodevelopmental disorders have a consistent phenotype of mild to severe intellectual disability (ID), epilepsy, language delay and behavioral disorders. This phenotypic description is mainly based on knowledge from the pediatric population.MethodHere, we sought to describe patients with SLC6A1 variants and age above 18 years through the ascertainment of published and unpublished patients. Unpublished patients were ascertained through international collaborations, while previously published patients were collected through a literature search.ResultsA total of 15 adult patients with SLC6A1 variants were included. 9/13 patients had moderate to severe ID (data not available in two). Epilepsy was prevalent (11/15) with seizure types such as absence, myoclonic, atonic, and tonic–clonic seizures. Epilepsy was refractory in 7/11, while four patients were seizure free with lamotrigine, valproate, or lamotrigine in combination with valproate. Language development was severely impaired in five patients. Behavioral disorders were reported in and mainly consisted of autism spectrum disorders and aggressive behavior. Schizophrenia was not reported in any of the patients.DiscussionThe phenotype displayed in the adult patients presented here resembled that of the pediatric cohort with ID, epilepsy, and behavioral disturbances, indicating that the phenotype of SLC6A1-NDD is consistent over time. Seizures were refractory in >60% of the patients with epilepsy, indicating the lack of targeted treatment in SLC6A1-NDDs. With increased focus on repurposing drugs and on the development of new treatments, hope is that the outlook reflected here will change over time. ID appeared to be more severe in the adult patients, albeit this might reflect a recruitment bias, where only patients seen in specialized centers were included or it might be a feature of the natural history of SLC6A1-NDDs. This issue warrants to be explored in further studies in larger cohorts

    Biallelic inherited SCN8A variants, a rare cause of SCN8A‐related developmental and epileptic encephalopathy

    Full text link
    ObjectiveMonoallelic de novo gain‐of‐function variants in the voltage‐gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss‐of‐function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss‐of‐function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild‐type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A.MethodsWe identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells.ResultsWe identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss‐of‐function, and one allele with altered biophysical properties consistent with partial loss‐of‐function.SignificanceThese studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/1/epi16371_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153117/2/epi16371.pd

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    Widespread genomic influences on phenotype in Dravet syndrome, a 'monogenic' condition

    Get PDF
    Dravet syndrome is an archetypal rare severe epilepsy, considered "monogenic", typically caused by loss-of-function SCN1A variants. Despite a recognisable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. Polygenic risk scores for intelligence are lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors

    Intrafamilial variability in SLC6A1-related neurodevelopmental disorders

    Get PDF
    IntroductionPhenotypic spectrum of SLC6A1-related neurodevelopmental disorders (SLC6A1-NDD) includes intellectual disability (ID), autistic spectrum disorders (ASD), epilepsy, developmental delay, beginning from early infancy or after seizure onset, and other neurological features such as hypotonia and movement disorders. Data on familial phenotypic heterogeneity have been rarely reported, thus in our study we aimed to investigate intrafamilial phenotypic variability in families with SLC6A1 variants.MethodsWe collected clinical, laboratory and genetic data on 39 individuals, including 17 probands, belonging to 13 families harboring inherited variants of SLC6A1. Data were collected through an international network of Epilepsy and Genetic Centers.ResultsMain clinical findings in the whole cohort of 39 subjects were: (a) epilepsy, mainly presenting with generalized seizures, reported in 71% of probands and 36% of siblings or first/second-degree relatives. Within a family, the same epilepsy type (generalized or focal) was observed; (b) ID reported in 100% and in 13% of probands and siblings or first/second-degree relatives, respectively; (c) learning disabilities detected in 28% of the SLC6A1 carriers, all of them were relatives of a proband; (d) around 51% of the whole cohort presented with psychiatric symptoms or behavioral disorders, including 82% of the probands. Out of the 19 patients with psychiatric symptoms, ASD were diagnosed in 40% of them; (e) neurological findings (primarily tremor and speech difficulties) were observed 38.5% of the whole cohort, including 10 probands. Our families harbored 12 different SLC6A1 variants, one was a frameshift, two stop-gain, while the remaining were missense. No genotype–phenotype associations were identified.DiscussionOur study showed that first-or second-degree relatives presented with a less severe phenotype, featuring mainly mild intellectual and/or learning disabilities, at variance with the probands who suffered from moderate to severe ID, generalized, sometimes intractable, epileptic seizures, behavioral and psychiatric disorders. These findings may suggest that a proportion of individuals with mild SLC6A1-NDD might be missed, in particular those with an older age where genetic testing is not performed. Further studies on intrafamilial phenotypic variability are needed to confirm our results and possibly to expand the phenotypic spectrum of these disorders and benefit genetic counseling

    Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders

    Get PDF
    Abstract Background Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs. Methods Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo variant burden in gene families. Results We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. Conclusion This study represents the first method to incorporate gene family information into a statistical framework to interpret variant data for NDDs and to discover new NDD-associated genes

    CNV-ClinViewer: Enhancing the clinical interpretation of large copy-number variants online

    Get PDF
    Purpose Large copy number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. Methods We developed a web-application combining >250,000 patient and population CNVs together with a large set of biomedical annotations and provide tools for CNV classification based on ACMG/ClinGen guidelines and gene-set enrichment analyses. Results Here, we introduce the CNV-ClinViewer (https://cnv-ClinViewer.broadinstitute.org), an open-source web-application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface. Conclusion Overall, this resource facilitates semi-automated clinical CNV interpretation and genomic loci exploration and, in combination with clinical judgment, enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators patient care and for basic scientists translational genomic research

    Phenotypic and genetic spectrum of epilepsy with myoclonic atonic seizures

    Get PDF
    Objective: We aimed to describe the extent of neurodevelopmental impairments andidentify the genetic etiologies in a large cohort of patients with epilepsy with myoclonicatonic seizures (MAE).Methods: We deeply phenotyped MAE patients for epilepsy features, intellectualdisability, autism spectrum disorder, and attention-deficit/hyperactivity disorderusing standardized neuropsychological instruments. We performed exome analysis(whole exome sequencing) filtered on epilepsy and neuropsychiatric gene sets toidentify genetic etiologies.Results: We analyzed 101 patients with MAE (70% male). The median age of seizureonset was 34 months (range = 6-72 months). The main seizure types were myoclonicatonic or atonic in 100%, generalized tonic-clonic in 72%, myoclonic in 69%, absencein 60%, and tonic seizures in 19% of patients. We observed intellectual disability in62% of patients, with extremely low adaptive behavioral scores in 69%. In addition,24% exhibited symptoms of autism and 37% exhibited attention-deficit/hyperactivitysymptoms. We discovered pathogenic variants in 12 (14%) of 85 patients, includingfive previously published patients. These were pathogenic genetic variants inSYNGAP1 (n = 3), KIAA2022 (n = 2), and SLC6A1 (n = 2), as well as KCNA2,SCN2A, STX1B, KCNB1, and MECP2 (n = 1 each). We also identified three newcandidate genes, ASH1L, CHD4, and SMARCA2 in one patient each.Significance: MAE is associated with significant neurodevelopmental impairment.MAE is genetically heterogeneous, and we identified a pathogenic genetic etiologyin 14% of this cohort by exome analysis. These findings suggest that MAE is a manifestationof several etiologies rather than a discrete syndromic entity
    • …
    corecore