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Abstract

Background: Classifying pathogenicity of missense variants represents a major challenge in clinical practice during
the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene
conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes
belong to gene families. The use of gene family information for disease gene discovery and variant interpretation
has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or
non-conserved sites in human gene families are important in NDDs.

Methods: Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on
paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo
variant burden in gene families.

Results: We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across
all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that
identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of
which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint.
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Conclusion: This study represents the first method to incorporate gene family information into a statistical
framework to interpret variant data for NDDs and to discover new NDD-associated genes.

Keywords: Paralogs, Gene family, Conservation, Missense variants, Neurodevelopmental disorders

Background

Differentiating risk-conferring from benign missense
variants represents a major challenge in clinical practice
to diagnose rare and genetic heterogeneous neurodeve-
lopmental disorders (NDDs). Protein sequence conserva-
tion is one of the main underlying assumptions for
methods evaluating the pathogenicity of missense vari-
ants. It is commonly determined by aligning mammalian
or vertebrate protein sequences to identify conserved
sites among orthologs. The high average sequence simi-
larity of homologs of disease-associated genes often
translates into highly conserved sequence profiles
(Fig. 1a). Recent large-scale sequencing studies on NDDs
have independently identified multiple paralogous genes
associated with the same or related NDD (e.g., the family
of voltage-gated sodium channel genes: SCN1A, SCN2A,
SCN8A; the family of chromodomain helicase DNA-
binding proteins: CHD2, CHD4, CHD8) [1–4]. This ob-
servation raises the question whether other genes within
the same gene family are also associated with NDDs.
Since in the aforementioned NDD sequencing studies
truncating variants in paralogs often show consistent as-
sociations to NDDs, we sought to explore whether para-
log information could refine our interpretation of
missense variation. Paralogs often have similar protein
sequences (Fig. 1b), and amino acids conserved across
all paralogs might well be critical for protein function.
As such, variants changing paralog-conserved residues
may plausibly be more deleterious than variants chan-
ging residues in paralog non-conserved sites and there-
fore be more likely to confer risk to disease. Two
previous studies have highlighted the utility of system-
atic functional annotation of disease-causing residues
across human paralogs for genes associated with long
QT syndrome, Brugada syndrome, and catecholaminer-
gic polymorphic ventricular tachycardia [5, 6]. Both
studies showed improved variant interpretation by com-
paring corresponding mutations in paralogs in patients
with the same phenotype.
Statistical power for the discovery of disease-

associated genes is the greatest in genetically
homogeneous patient groups. NDDs are phenotypically
and genetically heterogeneous. Several of the NDD
disease-associated genes are pleiotropic and appear in
clinically distinct NDDs (sub-NDDs) indicating a shared
molecular pathology. Even in NDD cohorts with > 1000
trios, the majority of disease-associated genes have fewer

than 10 de novo variants [1–4]. To increase the statis-
tical power, gene set enrichment analysis is often applied
to discover pathways associated with diseases of the
same or a similar phenotype [5, 6]. The 3348 human
protein-coding gene families accounted for 72% of the
protein-coding genes. It has been shown before that ap-
proximately 80% of disease-associated genes have para-
logs in human [7]. To our knowledge, it has not been
empirically investigated on a genome-wide scale whether
disease-associated missense variants reside in paralog-
conserved or non-conserved sites. In this manuscript, we
evaluate the use of “paralog conservation” and provide
evidence that this information offers a powerful addition
to variant annotation and disease gene discovering in
NDDs.

Methods
Patient and genetic data
We analyzed exome sequencing variant data from 10,
068 neurodevelopmental disorder (NDD) trios (probands
and their unaffected parents) including 3982 autism
(ASD), 5226 developmental delay (DD), and 822 severe
epilepsy (EPI) patients. The ASD cohort was derived
from published studies [2, 8]. The DD cohort combined
previously published de novo DD and ID studies which
used similar cohort inclusion/exclusion criteria [3, 4, 9–
11]. The EPI cohort included published trio data sets
from (356/822 trios, 43%) [1, 12] as well as 466 (56% of
the 822 trios) exome-wide de novo data that were re-
cently published [13]. As control data, we used variant
data from 2078 trios sequenced with the same technol-
ogy as the ASD patient cohort. These controls are un-
affected siblings of the ASD patients [2, 10].
To ensure uniformity in the variant representation and

annotation across published datasets and with respect to
the ExAC reference database [14], we created a stan-
dardized variant representation using a Python imple-
mentation of vt [15] and re-annotated all variants from
the different datasets with ANNOVAR [16] using the
RefSeq and Ensembl gene annotations (2016Feb01) and
the conservation score GERP++ [17].

Definition of gene family and paralog conservation
Ensembl defines gene families based on maximum likeli-
hood phylogenetic gene trees [18] using the longest
translated protein annotated in CCDS [19] for each
gene. Paralogs are then defined as genes of the same
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species related by a duplication event (as an inner tree
node). First, we downloaded the human paralog defini-
tions using the Ensembl BioMart system [20] represent-
ing each gene with an Ensembl gene identifier. The
paralogs could be grouped into 3584 gene families.
Ensembl IDs were then converted to HGNC gene
names. Non-coding genes and genes without a HGNC
symbol were excluded, and only gene families with at
least two HGNC genes were used for further analysis.
CCDS data were downloaded the same day as HGNC
and Ensembl data (v20150512).
In total, 3348 gene families were defined for 13,382

HGNC genes; 1815 families contained three or more
paralogs. We extracted the longest transcript from
CCDS for each HGNC gene and constructed for each
gene family a multiple sequence alignment with

MUSCLE [21] including all paralog protein sequences.
Evolutionary younger paralogs show higher functional
redundancy [22]. To avoid alignments of strongly diver-
ging sequences and to increase overall similarity, we
built sub-groups for each gene family using pairwise
alignment length cutoffs of > 80% aligned residues [23].
Clusters (sub-families) were defined by connected com-
ponents within a protein family alignment similarity
graph in which two genes with > 80% aligned residues
were connected through an edge. Only clusters with at
least two proteins were further processed. In total, we
generated 2871 (sub) gene families comprising 8233
genes. Each sub-group was re-aligned using MUSCLE.
The MUSCLE output was then processed as input for
JalView [24] to generate conservation scores for each
alignment position. The conservation score calculation

Fig. 1 Vertical (ortholog) vs. horizontal (paralog) conservation. Top: protein sequence alignment of voltage-gated sodium channels. Top left:
alignment of Homo sapiens (NP_001159435.1), Bos taurus (NP_001180147.1), and Mus musculus (NP_001300926.1) SCN1A protein sequences. High
sequence similarity is depicted by violet amino acid coloring and yellow conservation bars below the alignment using JalView. Top right: protein
alignment in JalView of all members of the human voltage-gated sodium channel gene family (SCN1A, SCN2A, SCN3A, SCN4A, SCN5A, SCN7A,
SCN8A, SCN9A, SCN10A, SCN11A). This alignment of paralogs shows less conservation compared to the alignment of SCN1A to its vertical cross-
species orthologs on the left. Bottom left: GERP score analysis over all genes within gene families (homolog conservation is measured by the
percentage of all nucleotides per gene with GERP scores > 2). Bottom right: distribution percentage of nucleotides per gene within gene families
having para_zscores > 0. Conservation between close homologs is generally much more uniform and homogeneous than conservation
between paralogs
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in JalView is based on the AMAS method of multiple se-
quence alignment analysis [25]. Conservation is mea-
sured here as a numerical index reflecting the
conservation of physico-chemical properties in the
alignment. Amino acid identity scores the highest, and
substitutions to amino acids lying in the same physico-
chemical class scored higher than from different classes.
For each HGNC CCDS gene, the conservation scores at
each position were extracted from the JalView. Finally,
to identify amino acids of high and low paralog conser-
vation and to make scores comparable between genes,
the mean and the standard deviation conservation score
over all amino acids per gene were calculated to com-
pute a paralog conservation z-score (para_zscore) per
amino acid position by subtracting the mean from the
original score dividing the difference by the standard de-
viation. Residues with positive para_zscores are defined
as paralog conserved and residues with negative values
as paralog non-conserved (Additional file 1: Figure S1A
and Figure S2).

Comparison of paralog and ortholog conservation
To compare paralog and ortholog conservation, we col-
lected for every gene having human paralogs all ortholo-
gous protein sequences down to vertebrates using
ENSEMBL BioMart and processed the ortholog se-
quences analogous to the paralog workflow described
above. We generated multiple sequence alignments
using MUSCLE, calculated conservation for each pos-
ition of the alignment using JalView using the AMAS
scoring, and calculated a z-score for the orthologous
conservation analogous to the paralog conservation for
each residue of the gene. By definition, as for the para-
logs, conserved means z-score > 0 and non-conserved z-
score ≤ 0. Then, we compared for each gene how many
and which positions were conserved in orthologous or/
and paralogous proteins. The similarity between paralog
and ortholog conservations was calculated using the
Rand Index (RI) [26] using the rrand function of the
phyclust 0.1-28 R package (available from https://CRAN.
R-project.org/package=phyclust) and Pearson’s correl-
ation with the cor.test method. All calculations were
done in R version 3.41.

Gene family enrichment analysis
To identify gene families with significant mutational
burden, we adopted a de novo expectation model [27] to
assess mutation rates for nonsense, frameshift, or canon-
ical splice disruptions (collectively termed protein-
truncating variants (PTVs)) and missense variants for
gene families (missense+PTV). We derived gene-based
rates of de novo mutations from the local gene sequence
context and summed the expectations and the observed
counts for all genes within each gene family [14]. The

expected and observed numbers of de novo mutations in
each variant class for NDD combined were compared
using a Poisson distribution. Notably, the discovery of de
novo burden in a gene family is more challenging com-
pared to the single gene analysis because of larger
amount of expected mutations due to combining the ex-
pectations from all gene family members (including
those which are not expressed in the tissue of interest,
e.g., brain). We used a Bonferroni-corrected significance
threshold of 0.05 for the 2871 gene families tested. Fur-
thermore, to exclude “passenger” variants and enrich for
true disease variants, we excluded de novo variants also
seen in adult individuals without early onset NDDs in
ExAC (n = 60,706 exomes) prior to the enrichment ana-
lysis. Variants absent from this population reference
panel, which is a proxy for standing variation in the hu-
man population, are more likely to be deleterious. This
very stringent filter reduces the number of false-positive
disease-causing variants.

Enrichment analysis of paralog-conserved vs. non-
conserved sites
Similar to the gene family enrichment analysis above, we
adopted the de novo expectation model [27] to assess
the mutation rates for missense variants only. In this
site-specific enrichment analysis, we considered only
missense variants and missense expectations for each
gene family. We classified every amino acid position
within each gene into “conserved sites” with paralog
conservation (para_zscore > 0, residues with higher para-
log conservation than the gene-specific mean) and “non-
conserved sites” without paralog conservation (para_
zscore ≤ 0) and summed the observations for both
groups independently across the family. The expected
missense mutation rates were adjusted for the size of the
paralog-conserved sites and non-conserved sites. The
observed variant counts were assigned to either of these
two groups depending on the paralog conservation state
of the mutated amino acid residue for all members
within each gene family (Additional file 1: Figure S1B).
The expected and observed numbers of de novo muta-
tions in each variant class for NDDs combined were
compared using a Poisson distribution. To exclude
“passenger” variants and enrich for disease variants, we
excluded de novo variants present as standing variation in
the 60,706 individuals in ExAC prior to the enrichment
analysis.

Identification of brain-expressed genes and evolutionary
constraint
We extracted brain expression data from the Genotype-
Tissue Expression (GTEx) consortia [28] data and con-
sidered genes with > 1 read per kilobase of transcript per
million mapped reads (RPKM) in brain tissues as “brain-
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expressed.” Gene loss-of-function intolerance (pLI)
scores and gene missense intolerance scores were
derived from ExAC. We considered genes with missense
z-scores > 3.09 or pLI scores ≥ 0.9 as intolerant of
variants. Genes were classified as plausible novel disease
genes for NDD if they were present in an exome-wide
enriched gene family, brain expressed, and under con-
straint (either missense or PTV).

Results
Paralog conservation of missense de novo mutations in
NDD patients
To investigate the degree to which de novo mutations
(DNMs) in NDDs are enriched in paralog-conserved
sites, we compared the variant distribution of DNMs in
10,068 NDD patients to 2078 individuals without NDDs.
To increase the signal, we excluded those DNMs present
in ExAC [29]. We evaluated the contribution of paralog-
conserved and non-conserved missense variants to
NDDs. Our analysis included 2871 gene families encap-
sulating 8233 genes. We observed 27 significantly
enriched (P < 3.48 × 10−6) gene families in the patient
cohort that were only identified in an analysis of
paralog-conserved missense variants, but none in the
parallel, comparably powered, analysis of non-conserved
sites only (Fig. 2a). Although many of these genes also

show a burden for protein-truncating variants (PTVs),
the paralog enrichment is specific for missense variants
since we did not identify a shift towards paralog-
conserved sites for nonsense variants (Fig. 2b). This is in
line with the nonsense-mediated decay as the expected
disease mechanism for PTV mutations, regardless of the
variant position within the protein sequence. Further-
more, missense variant enrichment at paralog-conserved
sites is not detectable in genes without a DNM burden
in this study.

Gene family enrichment in NDDs and sub-phenotypes
After establishing that disease-associated missense vari-
ants are enriched at paralog-conserved sites (Add-
itional file 1: Figure S1), we assessed the degree to which
gene family information could assist in discovering novel
disease-associated genes using the cohort of 10,068
patients with NDDs. We extended the approach of
Samocha et al. [27] (see the “Methods” section) to gene
families to identify gene families with significant enrich-
ment of mutations in NDD patients. We included any
protein-truncating variants (PTVs) across the entire
sequence as well as all missense variants at paralog-
conserved protein sites absent from ExAC into this
analysis.

Fig. 2 Assessment of paralog conservation. a Identification of missense variant gene family enrichment in NDD patients for paralog-conserved
missense variants. NDD-associated missense variants are enriched in paralog-conserved sites. y-axis: missense variant enrichment analysis
considering only paralog non-conserved sites across genes of each gene family (para_zcore ≤ 0, pmissense_not_conserved). x-axis: missense variant
enrichment analysis considering only paralog-conserved sites (para_zcore > 0, pmissense_conserved). None of the gene families shows exome-wide
significant enrichment for paralog non-conserved sites. Twenty-six gene families (depicted by circles) show exome-wide significant de novo
missense variant burden at paralog-conserved sites. The significance threshold was calculated by Bonferroni correction for testing 5 × 2871 gene
families (P = 3.48 × 10−6) and is depicted by the blue dotted line. b Enrichment of missense variants in paralog-conserved sites in genes with
significant DNM burden in this study. Distribution of NDD patient missense, nonsense, and synonymous para_zscores for all non-significantly
enriched genes (top) and genes significantly enriched for DNM missense variants (bottom panel) depicted by density plots. DNM burden was
calculated using the mutational framework described by Samotcha et al. (for details, see the “Methods” section). Genes were categorized into two
groups: those with a significant burden and those without. In disease-associated genes (those with DNM burden), missense variants were
enriched at paralog-conserved sites relative to missense variants in non-significantly enriched genes (P value < 2.2E−16, top vs. bottom panel).
Missense variants in genes without DNM burden were not enriched at paralog-conserved sites compared to synonymous variants (P value =
0.1157, top panel). In genes with DNM burden (bottom panel), missense variants were significantly enriched at paralog-conserved sites compared
to synonymous variants (P value = 3.01 × 10−4). The same test for nonsense variants vs. synonymous variants did not show significant differences
in paralog conservation (P value = 0.3913). P values were calculated using a Wilcoxon test
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We identified 43 gene families (1.49% of all gene fam-
ilies) enriched for de novo paralog-conserved missense
and PTVs (Bonferroni correction significance threshold
for testing 5 × 2871 gene families = 3.48 × 10−6; Table 1).
In all 43 gene families, the most frequently mutated gene
and often additional genes harboring de novo variants
are brain-expressed (Fig. 3). Within the enriched gene
families, 94 paralogs carried at least one DNM vs. 59
paralogs without any DNM. In total, 7.47% of all NDD
patients carried a de novo paralog-conserved missense
or PTV in the 43 enriched gene families. In the NDD pa-
tients, we found 753 DNMs in 43 gene families while
only 49.92 DNMs were expected (P ≪ 1.0 × 10−100). The
paralog-conserved missense variant enrichment signal of
these genes was 7.8-fold (observed DNMs, 261; expected
DNMs, 33.01). There was no enrichment if we examined
the paralog non-conserved missense variants in this
group of genes (observed DNMs, 41; expected DNMs,
31.03). No enrichment was observed in the 2078 individ-
uals without a NDD (observed DNMs, 5; expected
DNMs, 10.34, P = 1.0). The majority of the frequently
mutated genes have previously been established as
disease-associated genes by demonstrating an exome-
wide significant DNM burden in disease-specific single
gene enrichment studies (Table 1, highlighted in black
and bold) [1–4, 10]. When removing all the established
disease genes from the analysis, we still observe a 4.72-
fold enrichment (observed, 162 DNMs in the 43
enriched genes families; expected, 34.27, P = 6.10 ×
10−56). This enrichment increases to 5.28-fold when we
removed all non-brain-expressed genes from the 43
enriched genes families (28.71 DNM expected vs. 149
DM observed, P = 3.72 × 10−57).
Several of these genes, previously not associated with

any disease, represent likely NDD-associated genes based
on the gene expression, single patient, and mouse gene
knockout studies (Additional file 1: Table S1). In one
out of the 43 enriched gene families, we observe that the
novel NDD-associated gene harbors more DNM variants
than the established disease-associated gene of the same
gene family (CHD3 vs. CHD4; Table 1). Four gene fam-
ilies show a genome-wide gene family enrichment with-
out prior evidence for any gene on the genome-wide
level, even though some individual genes are known
disease genes (Additional file 1: Table S1). These gene
families include the RAB2A/B-RAB4A/B-RAB11A/B-
RAB14-RAB19-RAB25-RAB30-RAB39A/B-RAB43-, the
HECW1/2-, the SOX1/4/7/8/9/10/11-, and the TCF7L1/
2- family. To find further evidence of disease association
for less frequently mutated gene family members, we
systematically investigated the evolutionary variant in-
tolerance (constraint) [27] and brain expression levels
for all mutated paralog genes within the enriched gene
families (Fig. 3). We observed that 28 paralog genes of

the enriched gene families with DNMs are under evolu-
tionary constraint and brain expressed (Additional file 1:
Table S1), showing the same signature as the known dis-
ease genes in the same families (Fig. 4). Although none
of these genes has previously been reported to be signifi-
cant on an exome-wide level, 60.71% (17/28) of the
novel disease-associated genes have been previously re-
ported in the literature in patients carrying a rare single
nucleotide or copy number variant affecting the gene
(Additional file 1: Table S1). For 64.28% (18/28) of the
genes, available mouse models show neurological and/or
behavioral phenotypes supporting the disease associ-
ation. Given these multiple lines of evidence, in addition
to the sequence and expression pattern similarity to the
known disease genes in the same families, we consider
this list of 28 genes as highly promising candidate dis-
ease genes.

Paralog vs. ortholog conservation
In total, we analyzed 4,869,838 residue positions in the
genes within paralog families; 564,758 (12%) were only
paralog and 411,284 (8%) only ortholog conserved; 3,
393,797 (80%) positions were either conserved or not-
conserved in both. Using the adjusted Rand Index (RI)
as a similarity measure to compare to equal (number of
residue positions) binary vectors for paralog and ortho-
log conservation, the adjusted RI was 0.3590 (RI = 1
would be identical), clearly showing that both conserva-
tion measures are capturing different residues of pro-
teins while having a large overlap. Using Pearson’s
correlation method, the correlation between paralog and
ortholog conservation was 0.6 (P value < 2.2E−16, 95%
CI [0.5994, 0.6008]). This shows that paralog- and
ortholog-conserved sites are moderately correlated but
do not show a strong correlation.

Discussion
Across multiple analyses in this study, we empirically
demonstrate that disease-associated missense variants are
enriched at paralog-conserved sites and that this informa-
tion can offer substantial value in mutation annotation on
top of the widely used annotation methods. We developed
a gene family DNM enrichment framework and computed
a novel amino acid paralog conservation metric, applicable
to 42% of all genes in the human genome. Application of
the genome-wide paralog conservation metric demon-
strates that pathogenic variants affect paralog-conserved
sites in NDDs. In contrast, non-conserved sites are more
frequently mutated in our tested controls, for which the
vast majority of variants are presumed benign. It has re-
cently been proposed that conserved residues within gene
family members (paralogs) are under evolutionary con-
straint and that in silico annotations of known disease-
associated residues across families of related proteins can

Lal et al. Genome Medicine           (2020) 12:28 Page 6 of 12



Table 1 Forty-three significantly enriched gene families in the combined de novo paralog-conserved missense and PTV analysis for
10,068 NDD trios. Only enriched gene families significant after applying the Bonferroni significance threshold for testing 5 × 2871
gene families (3.48 × 10−6) are included. Gene names highlighted in red are affected by DNM and the number of DNM is indicated
inside the soft brackets. Genes in bold have not previously been reported as significantly enriched in exome-wide ASD, DD, or EPI
studies

Gene families DNMs
expected

DNMs
observed

P
value

5264 DD
patients

3982 ASD
patients

822 EPI
patients

2087
controls

ARID1B (40), ARID1A (5) 0.96 45 4.28E−58 39 6 0 0

SCN2A (38), SCN1A (18), SCN8A (11), SCN3A (4), SCN11A (2),
SCN9A (1), SCN5A, SCN7A, SCN4A, SCN10A

6.16 74 1.77E−52 36 16 22 0

DDX3X (35), DDX3Y 0.49 35 8.94E−52 34 1 0 0

DYRK1A (26), DYRK1B (1) 0.37 27 1.89E−40 21 5 1 0

EP300 (20), CREBBP (16) 1.39 36 8.81E−38 30 5 1 1

KCNQ2 (23), KCNQ3 (7), KCNQ5 (3) 1.14 33 3.09E−36 27 2 4 0

SYNGAP1 (24), DAB2IP, RASAL2 1.33 24 4.35E−22 17 6 1 0

STXBP1 (20), STXBP3 (1), STXBP2 0.88 21 5.93E−22 14 2 5 0

GRIN2B (16), GRIN2A (6), GRIN2C (1), GRIN2D 1.89 23 1.46E−17 17 3 3 0

CTNNB1 (16), JUP (1) 0.79 17 2.27E−17 15 2 0 0

CHD2 (16), CHD1 (3) 1.15 19 4.00E−17 10 8 1 0

PURA (13), PURB 0.41 13 1.13E−15 12 0 1 0

CHD3 (10), CHD4 (6), CHD5 (5) 1.94 21 3.45E−15 19 2 0 0

TCF4 (11), TCF12 (3), TCF3 (2) 0.93 16 5.76E−15 14 2 0 1

CDK13 (14), CDK12 0.66 14 1.71E−14 13 1 0 0

PPP2R5D (16), PPP2R5A (1), PPP2R5B, PPP2R5C, PPP2R5E 1.25 17 3.62E−14 16 1 0 1

WDR45 (11), WDR45B 0.32 11 7.60E−14 9 0 2 0

MEF2C (11), MEF2D (2), MEF2A 0.58 13 7.77E−14 9 2 2 0

EHMT1 (13), EHMT2 0.66 13 3.93E−13 13 0 0 0

FOXP1 (10), FOXP2 (4), FOXP4 0.86 14 6.02E−13 12 2 0 0

FOXG1 (11), FOXQ1, FOXN3, FOXN2 0.39 11 6.36E−13 7 1 3 0

CHD8 (12), CHD7 (7), CHD9 (1) 2.30 20 7.73E−13 11 9 0 0

CSNK2A1 (12), CSNK2A3, CSNK2A2 0.63 12 5.00E−12 10 1 1 0

CACNA1E (10), CACNA1A (9), CACNA1B (1) 2.72 20 1.53E−11 13 1 6 0

HDAC8 (9), HDAC3 (2), HDAC1 (1), HDAC2 0.83 12 1.06E−10 11 0 1 0

GNAO1 (7), GNAI1 (7), GNAZ (1), GNA11 (1), GNA14, GNAI3,
GNAT2, GNAT3, GNAT1, GNAI2, GNA15, GNAQ

1.82 16 1.31E−10 13 2 1 0

CASK (8), DLG4 (6), DLG2 (1), DLG1, DLG3 1.58 15 1.67E−10 12 1 2 0

GATAD2B (10), GATAD2A 0.65 10 2.10E−09 10 0 0 0

MED13L (12), MED13 (2) 1.68 14 3.47E−09 10 4 0 0

TBL1XR1 (9), TBL1Y, TBL1X 0.52 9 5.01E−09 7 2 0 0

PHIP (10), BRWD3 (2) 1.46 13 5.64E−09 10 2 1 0

CTCF (9), CTCFL 0.56 9 9.00E−09 7 2 0 0

RAB11A (3), RAB2A (2), RAB11B (2), RAB14 (2), RAB19 (1),
RAB43 (1), RAB39A, RAB25, RAB4B, RAB39B, RAB4A,
RAB30, RAB2B

1.01 11 1.14E−08 9 2 0 0

GABRB3 (8), GABRB2 (3), GLRA2 (1), GABRB1 (2), GLRB (1),
GLRA1, GABRR1, GABRD, GABRR3, GABRP, GLRA4,
GABRQ, GABRR2, GLRA3

2.35 15 3.15E−08 7 4 4 0

TCF20 (9), RAI1 (3) 1.40 12 3.33E−08 11 1 0 1

NFIX (6), NFIA (2), NFIB (2), NFIC 0.90 10 4.31E−08 8 2 0 1
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guide variant interpretation [30]. Our results support the
idea that paralogs share a similar “core” molecular func-
tion of the ancestral gene, since variants in these sites are
enriched for patient missense variants indicating hereby a
reduction in evolutionary fitness. Evolutionary younger
paralogs show higher functional redundancy [22]. To con-
trol the functional diversity within gene families and to in-
crease the within-family sequence similarity, we built gene
family sub-groups for each defined gene family using
pairwise alignment length cutoffs of > 80% aligned amino
acids [23].

Sequence conservation across gene families has been ex-
tensively discussed in the literature. On the one hand,
orthologous domain pairs tend to be significantly more
structurally similar than paralogous pairs at the same level
of sequence identity [31]. On the other hand, it has been
shown that paralogs are functionally not necessarily re-
dundant, and the average fitness cost of loss of a paralo-
gous gene is at least equal deleting single non-paralogous
genes in yeast [32]. In addition, protein complexes have
been documented to use paralog switching as a mechan-
ism for the regulation of complex stoichiometry [33]. For

Table 1 Forty-three significantly enriched gene families in the combined de novo paralog-conserved missense and PTV analysis for
10,068 NDD trios. Only enriched gene families significant after applying the Bonferroni significance threshold for testing 5 × 2871
gene families (3.48 × 10−6) are included. Gene names highlighted in red are affected by DNM and the number of DNM is indicated
inside the soft brackets. Genes in bold have not previously been reported as significantly enriched in exome-wide ASD, DD, or EPI
studies (Continued)

Gene families DNMs
expected

DNMs
observed

P
value

5264 DD
patients

3982 ASD
patients

822 EPI
patients

2087
controls

USP9X (10), USP24 (1), USP9Y 1.18 11 5.29E−08 9 2 0 0

SATB2 (9), SATB1 0.75 9 1.04E−07 9 0 0 0

HECW2 (9), HECW1 (1) 1.04 10 1.61E−07 8 1 1 0

SOX11 (4), SOX4 (3), SOX9 (1), SOX10 (1), SOX17, SOX1,
SOX8, SOX7

0.82 9 2.21E−07 9 0 0 0

ZBTB18 (6), ZBTB3 0.28 6 5.43E−07 6 0 0 0

TCF7L2 (6), TCF7L1 (1) 0.53 7 1.48E−06 4 3 0 0

TBR1 (6), EOMES 0.35 6 2.01E−06 1 5 0 0

Fig. 3 Established NDD disease genes are brain expressed and under evolutionary constraint. Every dot represents a gene of the 43 DNM
enriched gene families. The colors of the box and font represent the number of DNMs (N.DNM) identified in the gene in 10,668 NDD trios. y-axis:
brain gene expression level in RPKM derived from the GTEx expression dataset; x-axis: gene constraint scores (left: pLI, indicating gene LoF
intolerance; right: missense z-score, indicating gene missense intolerance). Disease-associated DNMs are likely to affect brain-expressed and
evolutionary constrained genes (defined as brain expression RPKM > 1, constraint score pLI ≥ 0.9 and missense z-score > 3.09; green boxes). In
support of this hypothesis, we observe that all previously known and frequently mutated genes are brain expressed and under
evolutionary constraint
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example, many receptors in the human brain consist of
multiple protein subunits, many of which have multiple
paralogs and are differentially expressed across brain re-
gions and developmental stages. The brain can tune the
electrophysiological properties of synapses to regulate
plasticity and information processing by switching from
one protein variant to another [34]. Such condition-
dependent variant switch during development has been
demonstrated in several neurotransmitter systems includ-
ing NMDA and GABA [33]. Naturally, the question arises
whether paralog-conserved or non-conserved sites of the
protein sequence are essential for function.
NDDs represent a genetic and phenotypic heteroge-

neous group of diseases for which pathogenic variants in
individual disease genes are rare. Using a gene family ver-
sion of a recently established DNM enrichment frame-
work [27] for 10,068 NDD patients, we identified 43 PTV
and paralog-conserved missense DNM-enriched gene
families. Besides highlighting four gene families with
genome-wide gene family enrichment without carrying
any previously exome-wide established disease gene, the
RAB2A/B-RAB4A/B-RAB11A/B-RAB14-RAB19-RAB25-
RAB30-RAB39A/B-RAB43, the HECW1/2, the SOX1/4/
7/8/9/10/11, and the TCF7L1/2, we additionally report

28 genes showing for the first time statistical support as
disease genes. Pathogenic variants in all of these genes
are too rare to reach individual gene-wise exome-wide
significant enrichment. However, the individual genes be-
long to gene families that show exome-wide significant
enrichment, are brain expressed, and are under
evolutionary constraint in the general population [14].
Notably, three of the 43 enriched gene families belong to
chromatin helicase DNA-binding protein gene families.
Besides the established NDD genes, we observe also five
novel candidate disease genes in this group (CHD1,
CHD3, CHD5, CHD7, CHD9) with DNMs in 20 patients
in this study. All five genes represent valid candidates for
the association of NDDs based on our detailed analysis
(Additional file 1: Table S1). Chromatin remodeling is
one of the mechanisms by which gene expression is regu-
lated developmentally [35], perhaps explaining the sus-
ceptibility to NDDs when mutated. Additionally, four of
the brain-expressed, constrained genes that we identified
through the new paralog conservation test and pre-
sented in the first pre-print version of the manuscript
[36], CHD3, CACNA1E, PHIP, and GABRB2, were
recently shown to be significantly enriched in NDDs with
epilepsy [13].

Fig. 4 Visualization of para_zscores for KCNQ2, STXBP1, CACNA1A, and GRIN2B. Protein sequence is plotted from left to right. Each bar and dot
represent one amino acid. Amino acids affected by a missense mutation in the NDD cohort are colored blue, patient PTVs are depicted in pink,
and synonymous variants in orange. Amino acid residues with no mutations are colored gray. y-axis: para_zscore. Positive values indicate paralog
conservation, and the highest score indicates that these amino acids are identical over all gene family members. The red dotted lines indicate the
mean paralog conservation of each protein sequence, and the bars below the mean indicate regions of low paralog conservation, thus higher
sequence variability over all members of the gene family
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The vast majority of the current variant interpretation
methods are scoring single nucleotide variants, and the
resulting amino acid changes but do not give a score for
every amino acid position. The discrimination from
pathogenic to benign variants of these scores can be
similar to paralog conservation scoring (Additional file 1:
Figure S3); however, only the minority of scores can shed
light on functional essential protein regions. Paralog con-
servation can be used to identify stretches of (paralog)
conserved residues. These stretches can overlap functional
domains; however, not all annotated domains are paralog
conserved and harbor disease variants (Fig. 4 and
Additional file 1: Figure S4). Thus, visualization of paralog
conservation over the entire protein sequence represents a
new, biologically interpretable method for variant classifi-
cation that is able to highlight and discriminate functional
important sites based on the conservation with the gene
family. We propose that plotting the paralog conservation
is a useful tool to highlight likely functional important
protein regions showing high paralog conservation, and
thus intuitively supports variant prioritization (e.g., for
functional testing or drug target development). Paralogs
share similar protein sequences or structural features, e.g.,
similar binding pockets, e.g., a given compound may show
an increased affinity to bind members of the same gene
family, possibly resulting in unexpected cross-reactivity
and undesired side effects. Usage of the paralog conserva-
tion metric in drug target design could therefore have the
potential in ruling out or to reduce such cross-reactivity
effects. Paralog conservation plots are available on the
PER [37] webpage (http://per.broadinstitute.org).
Although our results demonstrate the utility of paralog

conservation, the ideal composition of the gene family
and choice of protein isoform may differ depending on
the individual research question. In addition, while con-
servation across orthologs or paralogs can be indicative
of the necessary function of a given domain, the absence
of conservation does not a priori exclude functionally
important domains within a protein. This consideration
may be particularly relevant for diseases with a later
onset which are less under evolutionary selection.

Conclusions
Overall, we provide empirical evidence using published
de novo variants from more than 10k NDD cases that
disease-associated missense variants are enriched at
paralog-conserved sites. We demonstrate that integra-
tion of paralog conservation can be leveraged as a
powerful method for variant interpretation and discovery
of new NDD disease-associated genes. We provide a
pre-computed genome-wide paralog conservation anno-
tation file for all human paralogs as individual files. This
resource should enable data and molecular scientists to
classify and visualize variants, genes, and proteins of

interest and to integrate paralog conservation with exist-
ing variant annotation tools.
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