24 research outputs found

    A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment

    Get PDF
    A multifunctional gold nanorod complex was formulated for synergistic anticancer treatment upon ultraviolet (UV) and infrared (IR) light dual irradiations

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Model‐Based Analysis Reveals a Sustained and Dose‐Dependent Acceleration of Wound Healing by VEGF‐A mRNA (AZD8601)

    No full text
    Intradermal delivery of AZD8601, an mRNA designed to produce vascular endothelial growth factor A (VEGF-A), has previously been shown to accelerate cutaneous wound healing in a murine diabetic model. Here, we develop population pharmacokinetic and pharmacodynamic models aiming to quantify the effect of AZD8601 injections on the dynamics of wound healing. A dataset of 584 open wound area measurements from 131 mice was integrated from 3 independent studies encompassing different doses, dosing timepoints, and number of doses. Evaluation of several candidate models showed that wound healing acceleration is not likely driven directly by time-dependent VEGF-A concentration. Instead, we found that administration of AZD8601 induced a sustained acceleration of wound healing depending on the accumulated dose, with a dose producing 50% of the maximal effect of 92 mu g. Simulations with this model showed that a single dose of 200 mu g AZD8601 can reduce the time to reach 50% wound healing by up to 5 days.Funding Agencies|Integrated Cardiometabolic Center, Karolinska Institute, Stockholm, Sweden; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&amp;D, AstraZeneca, Gothenburg, Sweden</p

    Model-Based Analysis Reveals a Sustained and Dose-Dependent Acceleration of Wound Healing by VEGF-A mRNA (AZD8601)

    No full text
    Intradermal delivery of AZD8601, an mRNA designed to produce vascular endothelial growth factor A (VEGF-A), has previously been shown to accelerate cutaneous wound healing in a murine diabetic model. Here, we develop population pharmacokinetic and pharmacodynamic models aiming to quantify the effect of AZD8601 injections on the dynamics of wound healing. A dataset of 584 open wound area measurements from 131 mice was integrated from 3 independent studies encompassing different doses, dosing timepoints, and number of doses. Evaluation of several candidate models showed that wound healing acceleration is not likely driven directly by time-dependent VEGF-A concentration. Instead, we found that administration of AZD8601 induced a sustained acceleration of wound healing depending on the accumulated dose, with a dose producing 50% of the maximal effect of 92 mu g. Simulations with this model showed that a single dose of 200 mu g AZD8601 can reduce the time to reach 50% wound healing by up to 5 days.Funding Agencies|Integrated Cardiometabolic Center, Karolinska Institute, Stockholm, Sweden; Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&amp;D, AstraZeneca, Gothenburg, Sweden</p
    corecore