
Dual Wavelength-Activatable Gold Nanorod Complex for 
Synergistic Cancer Treatment

Dennis B. Pacardoa,b, Bhanu Neupanea, S. Michaela Rikarda, Yue Lua,b, Ran Moa,b, Sumeet 
R. Mishrac, Joseph B. Tracyc, Gufeng Wangd, Frances S. Liglera,*, and Zhen Gua,b,e,*

aJoint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and 
North Carolina State University, 911 Oval Dr., Campus Mailbox 7115, Raleigh, North Carolina 
27695 USA

bCenter for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC 
Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 
27599, USA

cDepartment of Materials Science and Engineering, North Carolina State University, Raleigh, 
North Carolina 27695 USA

dDepartment of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 USA

eDepartment of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Abstract

A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic 

anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of 

doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for 

intracellular controlled drug release. Interaction of AuNR complex toward HeLa cells was 

facilitated via the folic acid targeting ligand as displayed in the dark-field images of cells. 

Enhanced anticancer efficacy was demonstrated through synergistic combination of promoted drug 

release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) 

irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for 

spatiotemporal delivery of anticancer therapeutics.
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A multifunctional gold nanorod complex was formulated for synergistic anticancer treatment upon 

ultraviolet (UV) and infrared (IR) light dual irradiations.

1. Introduction

Recent advances in nanotechnology have made significant contributions in the development 

of novel materials, which can be tailored and functionalized for broad applications in cancer 

research.1–8 For example, nanocarriers can accumulate in tumor sites through the enhanced 

permeability and retention (EPR) effect that can be exploited for co-delivery of therapeutic 

drugs and diagnostic agents in a single formulation. Such a theranostic combination provides 

for simultaneous drug delivery, imaging and monitoring of treatment response.9, 10 

Conveniently, inorganic nanomaterials such as quantum dots,11–13 iron oxide 

nanoparticles,14–16 carbon nanotubes,17 silica nanoparticles18,19 and gold nanoparticles/

nanorods,20–24 have been extensively employed as imaging agents; while their well 

established synthesis and surface functionalization can be followed by loading of therapeutic 

agents and conjugation of targeting moieties, with consequent increases in intracellular 

uptake. Moreover, these nanomaterials can be loaded with two or more therapeutic agents 

and programmed for site-specific delivery and stimuli-triggered drug release for enhanced 

efficacy.25–29 While the properties of these inorganic nanomaterials offer a lot of advantages 

and promises, concerns and limitations such as cytotoxicity, biocompatibility, cost and 

selectivity are critical hurdles to their advancements in clinical trials.10 However, gold-based 

nanomaterials have been found to be inherently noncytotoxic,30–34 thus attracting significant 

interest for cancer therapeutics.

In theranostic nanomedicine, gold-based nanomaterials have been widely studied due to 

their light scattering properties which are suitable for imaging applications and ease of 

surface functionalization which simplifies ligand attachment and anticancer drug 

conjugation.9, 10, 35, 36 Gold nanomaterials also have characteristic surface plasmon 

resonance that can be employed for localized light-induced heating sufficient to produce cell 

death by hyperthermia.37, 38 Early studies of theranostic gold nanomaterials reported by El-

Sayed and co-workers employed gold nanorods (AuNR) conjugated to monoclonal 

antibodies specific for epidermal growth factor receptor (anti-EFGR) for imaging and 

photothermal therapy (PTT) of neoplastic oral epithelial cell lines.39 In this system, dark-

field microscopy was used for cancer cell imaging;39 however, other imaging techniques 

were later developed. For example, two-photon imaging used silica-coated AuNR as contrast 

agents40 and surface-enhanced Raman scattering (SERS) used AuNRs tagged with Raman 

probes.41 For the therapeutic application of AuNRs, PTT was achieved by irradiation using 

IR light in accordance with the longitudinal SPR associated with the rods. Exposure of 

AuNRs to IR light causes rapid temperature increase that can reach the threshold (41 – 

43 °C)42 for hyperthermia-induced cancer cell apoptosis.37 Moreover, IR light penetrates 

deeply into tissues, which can be exploited for on-demand local heating of tumors.43 

Furthermore, functionalization of the AuNR surface can be used to attach ligands for 

anticancer drug encapsulation and intracellular delivery.41, 44–46 The combined drug delivery 

and PTT effects of AuNRs showed higher killing efficiency for cancer cells, while the 

addition of imaging and detection functions generate the potential for targeted delivery and 
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monitoring of therapeutic efficacy.47, 48 However, limitations such as low drug loading 

capacity, dose-induced toxicity and detection sensitivity remained to be addressed to fully 

realize the potential of AuNRs for cancer theranostics.

In this research, we developed a multifunctional AuNR complex, illustrated in Fig. 1a, 

composed of three main components: 1) cyclodextrin-functionalized AuNR for drug 

encapsulation, 2) dextran-4-phenyl-azo-benzoate (DexAzo) as a capping agent and 3) folic 

acid-PEG-maleimide-adamantane (FA) as targeting component. The cyclodextrin moiety in 

AuNR encapsulates small drug molecules such as doxorubicin (DOX)49, 50 and 

adamantane51–53 in its hydrophobic core forming a guest-host inclusion complex, thereby 

providing drug delivery and cancer cell targeting functions. In addition, the DexAzo 

compound serves as capping / uncapping agent due to the trans-cis isomerization of the azo 

moeity upon UV irradiation, providing triggered drug release.54 In combination with the 

drug delivery function, IR light treatment induces intracellular hyperthermia via PTT which 

contributes to cancer cell death. Moreover, the inherent ability of AuNR for light scattering 

was exploited for imaging applications via dark-field microscopy. This multifunctional 

AuNR complex has the potential to constitute a new approach for cancer therapy that 

illuminated targeted cells two independent wavelengths of light for increased toxicity 

control, as shown in Fig. 1b. The multifunctional AuNR complex demonstrated excellent 

biocompatibility and novel UV and IR light activated synergistic effects for inducing 

apoptosis in cancer cells.

2. Materials and Methods

2.1 Materials

Cetyltrimethylammonium bromide (CTAB), HAuCl4•3H2O, 11-mercaptoundecanoic acid 

(MUA), (2-hydroxypropyl)-β-cyclodextrin (CD), N,N’-dimethylformamide (DMF), N,N’-

dicyclohexylurea (DCC), hexadeuterodimethyl sulfoxide (d6-DMSO), dichloromethane 

(DCM), dimethyl sulfoxide (DMSO), dextran from Leuconostoc mesenteroides (MW 35K – 

40K), 4-phenyl-azo-benzoic acid, N,N’-carbonyldiimidazole (CDI) and 1-adamantanethiol 

were obtained from Sigma-Aldrich. NaBH4, AgNO3, L-ascorbic acid, ethanol (EtOH) were 

purchased from Fisher Scientific while 4-dimethylaminopyridine (DMAP) was obtained 

from Acros Organics. Doxorubicin hydrochloride (DOX) was obtained from BIOTANG Inc. 

(Lexington, MA, USA). Folic acid-PEG-maleimide (MW 2000) was purchased from 

Nanocs, Inc. (New York, NY) while trypan blue was obtained from HyClone Laboratories 

(Logan, UT).

2.1 Synthesis and Characterization of AuNRs

The AuNRs were synthesized using a seed-mediated method, which was previously 

reported.55, 56 Briefly, gold nanoparticle (AuNP) seeds were first synthesized in CTAB 

solution (7.5 mL, 100 mM) by adding the gold metal precursor, HAuCl4•3H2O (Au3+) (250 

µL, 10 mM) with cold NaBH4 solution (600 µL, 10 mM). After 1 h of incubation, the AuNP 

seeds (210 µL) were then added to a growth solution composed of the following: Au3+ (2.0 

mL, 10 mM), CTAB (47.5 mL, 100 mM), AgNO3 (300 µL, 10 mM) and ascorbic acid (320 

µL, 100 mM), to generate CTAB-AuNRs. Excess CTAB was removed from the CTAB-
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AuNRs solution by centrifugation. The washing process was done twice and the purified 

CTAB-AuNR was redispersed in deionized water. Functionalization of CTAB-AuNR (Fig. 

S1) was then performed through ligand exchange with MUA (10 mM) in 50:50 EtOH:H2O 

solution. Equal amounts (25 mL) of CTAB-AuNR and MUA solution were mixed overnight 

in a rotating wheel.57 The resulting MUA-AuNR was washed twice with water to remove 

excess CTAB and MUA and the precipitate was redispersed in DMF for further 

functionalization. The CD (720 mg) was then added to MUA-AuNR (50 mL) in DMF to 

facilitate the coupling reaction in the presence of DCC (210 mg) and DMAP (125 mg) as 

base at room temperature for 24 h.50 After the synthesis, the CD-AuNR was isolated through 

centrifugation, washed with water and filtered using PVDF 45-µm filter (Fisherbrand) to 

remove excess DCC. Further purification was done by dialyzing the CD-AuNR against 

water using a dialysis membrane with MWCO of 12K. The filtered and dialyzed CD-AuNR 

samples were then refrigerated for future use.

In each step of the synthesis of AuNRs, characterization techniques were employed to verify 

the functionalization procedure. UV-vis analysis was done by absorbance scan from 300 to 

1000 nm using Tecan Infinite M200 Pro multiplate reader. Sample preparation for 

transmission electron microscopy (TEM) analysis was done by applying a drop of AuNR 

solution in copper grid (Ted Pella) and air-dried at room temperature overnight. TEM 

imaging was then accomplished using JEOL 2000FX S/TEM operated at 200kV with LaB6 

as electron source. To characterize the surface functionalization of AuNRs, 1H NMR 

analysis was performed using 300 MHz Varian Gemini instrument with dried samples 

dissolved in d6-DMSO and placed in NMR tube. FTIR analysis was done using 

ThermoElectron FTIR with samples dissolved in DCM. Solution based size and zeta 

potential analysis were performed using a Zetasizer Nano System (Malvern).

2.3 Synthesis of photoactive dextran-4-phenyl-azo-benzoate (DexAzo) and targeting ligand, 
folic acid-PEG-maleimide-adamantane (FA)

The DexAzo complex was synthesized by dissolving dextran (500 mg) and 4-phenyl-azo-

benzoic acid (679 mg), in DMSO (15.0 mL) (Fig. S3a). Upon addition of CDI (487.5 mg), 

the reaction was heated to 80 °C and allowed to proceed for 20 h with constant stirring. The 

product was precipitated and washed with EtOH and dried under vacuum. 1H NMR analysis 

was done to characterize the final product. The targeting ligand, on the other hand, was 

synthesized by coupling commercially available folic acid-PEG-maleimide (MW 2000) (500 

µL, 10 mg/mL) with 1-adamantanethiol (500 µL, 5 mg/mL) in DMSO at room temperature 

with constant stirring for 24 h. The product, FA, was then placed in dialysis membrane to 

remove unreacted starting materials.

2.3 DOX encapsulation and UV-triggered release

For encapsulation of DOX, CD-AuNR (500 µL, 0.09 nM) was mixed with DOX solution (20 

µL, 5 mg/mL) and targeting ligand (10 µL) using a vortexer. Afterwards, DexAzo (100 µL, 1 

mg/mL) was added and the solution was incubated in the dark for 24 h in a rotating wheel at 

room temperature. The DOX-loaded CD-AuNR with DexAzo and targeting ligand was then 

separated by centrifugation, washed with water, isolated and stored at 4 °C for future use. 

For drug release studies, the DOX-loaded CD-AuNR was added with 1 mL deionized water 
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and irradiated with UV light using Dymax BlueWave 75 UV lamp. Aliquots of the sample 

(20 µL) were collected before and after irradiation to monitor DOX release using 

fluorescence scanning measurements. Different irradiation times were used to determine the 

least amount of time needed for optimum DOX release. The fluorescence scan was plotted to 

show the increase in fluorescence in the medium after UV treatment to show DOX release 

(Fig. S5). The fluorescence intensity at 595 nm was then use to plot the DOX release 

profiles.

2.4. Dark field imaging applications for functionalized AuNRs

HeLa cells (1 × 105 cells/well) were cultured in glass slides placed in 6-well plates for 24 h. 

AuNR formulations (2.0 mL), with FA (FA-CD-AuNR) and without FA (CD-AuNR) in 

culture media were then incubated with HeLa cells on glass slide. After 4 h of incubation, 

the cells were imaged using a Nikon eclipse 80i microscope equipped with Andor camera 

with dark-field condenser (oil 1.43 – 1.2 NA) and 100× (oil 1.5 – 1.25) objective.

2.5 Cell viability studies

HeLa cells (1 × 105 cell/well) were seeded in 96-well plate and cultured using DMEM with 

fetal bovine serum (10% (v:v)), penicillin (100U/ml) and streptomycin (100 mg/ml) in an 

incubator at 37 °C under an atmosphere of 5% CO2 and 90% relative humidity. Different 

formulations of DOX-loaded CD-AuNRs (equivalent to DOX concentrations of 0.25, 0.5, 

1.0, 2.0 and 4.0 µM) were then incubated with HeLa cells for 4 h, after which the solution 

was removed and replaced with fresh DMEM culture media. The cells were then subjected 

to 5 s of UV irradiation using Dymax BlueWave 75 UV lamp. The cells were then incubated 

for 24 h, followed by the standard MTT assay for cell viability. Similarly, control 

experiments were performed for cell viability studies employing the same protocol but with 

the following formulations: DOX-loaded CD-AuNR without UV, CD-AuNR with and 

without UV and standard DOX solutions.

2.6 Photothermal Therapy Application of AuNRs

IR irradiation was initially performed to a 2.0 mL solution of CD-AuNR using a red laser at 

800 nm at 1.5 W/cm2 power for 12 min. The increase in solution temperature was monitored 

using a digital thermometer. HeLa cells (in glass slides, prepared as described above) were 

incubated with CD-AuNRs for 4 h as described above. The glass slides were then marked 

with several small circular spots to indicate the section where the laser was focused for 10 

minutes. Afterwards, the cells were stained with trypan blue to visually observe the dead 

cells. Nikon Eclipse Ti bright field microscope equipped with a Tucsen colored camera was 

utilized to get the cell images after irradiation and typan blue incubation.

2.7 Confocal Laser Scanning Microscopy (CLSM)

HeLa cells (1 × 105 cells/well) in DMEM culture media were seeded in confocal dish and 

then incubated with DOX-loaded FA-CD-AuNR-DexAzo at different time points: 4 h, 2, h, 1 

h and 0.5 h. After the incubation period, the cells were washed with PBS (2 mL, 3×) and 

then stained with 1 mL of LysoTracker Green solution (1 µL in 20 mL FBS-free DMEM). 

The cells were then incubated at 37 °C for 0.5 h then washed with PBS (2 mL, 3×). Addition 
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of 1 mL of Hoechst 33342 solution (1 µL in 10 mL FBS-free DMEM) was then performed 

and the cells were incubated for 10 min. After which, the cells were washed with PBS (2 

mL, 3×) and added with 0.5 mL DMEM culture media. Confocal images for each time point 

(Fig. S7) were then obtained using Zeiss LSM710 confocal microscope.

2.8 Synergistic Effects

HeLa cells (1 × 105 cells/well) in DMEM culture media were seeded in confocal dish and 

then incubated with DOX-loaded FA-CD-AuNR-DexAzo for 4 h. The culture media was 

then replace with a fresh solution then the right half of the confocal dish was covered with 

aluminum foil to prevent exposure from UV and IR irradiation. The cells in the left half of 

the confocal dish was then subjected to 5 s UV and 10 min IR treatment. After this, the cells 

were washed with PBS (2 mL, 3×) then incubated with 150 µL LIVE/DEAD assay solution 

(composed of 20 µL EthD-1 stock solution added with 5 µL calcein AM stock solution in 10 

mL PBS) for 0.5 h. The cells were then viewed using fluorescence microscope monitoring 

the green fluorescence of live cells (ex/em, 495 nm/515 nm) and the bright red fluorescence 

in dead cells (ex/em, 495 nm/635 nm).

3. Results and Discussion

The functionalized AuNR were synthesized using the seed-mediated method55, 56 with 

CTAB as a stabilizer, followed by a ligand-exchange reaction with MUA.57 Next, the 

coupling reaction between the carboxylic acid group of MUA and the hydroxy group of 

CD50 generated CD-AuNRs (Fig. S1 and S2). Initial characterization after functionalization 

was performed using UV-vis analysis as shown in Fig. 2a. Two distinct absorbance peaks 

were observed at 510 nm and 800 nm, which correspond to the transverse and longitudinal 

surface plasmon resonances, respectively. TEM images (Fig. S2b) showed the formation of 

nearly monodispersed nanorods with an aspect ratio of around 3.7, which was conserved 

during functionalization. Dynamic light scattering analysis showed that CD-AuNRs have an 

average size of 99 ± 10 nm and a zeta potential of −20 ± 1 mV. The CD component can 

encapsulate small molecules such as DOX and can also interact with the trans isomer of the 

azo moeity in its hydrophobic core. Exploiting these interactions, DexAzo was then 

synthesized via direct coupling reaction between dextran and 4-phenyl-azo-benzoic acid 

(Fig. S3).58

The DexAzo component then serves as capping agent for CD-AuNR, forming a thin 

membrane layer that fully encapsulates the AuNRs as shown in the TEM image (Fig. 2b). 

The phenyl-azo moeity of the DexAzo undergoes trans to cis isomerization in the presence 

of UV light;54 thereby triggered drug release can be accomplished. To demonstrate this 

function, DOX was encapsulated in CD-AuNR after 24 h incubation together with DexAzo 

with a loading capacity of 0.23 mM per 0.5 mL CD-AuNR (Fig. S4b). The DOX-loaded 

CD-AuNR-DexAzo complex was then redispersed in deionized water and exposed to UV 

light for 5 s, 10 s and 30 s; after which the increase in DOX levels was monitored using 

fluorescence intensities (It) at 595 nm of the aliquots taken at 5, 10, 20 and 30 min after UV 

treatment. The ratio of fluorescence intensities, It/I0 (I0: initial fluorescence intensity before 

irradiation), was then plotted with time (Fig. 2c). The increase in fluorescence intensity at 
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595 nm due to DOX release after defined time interval was clearly demonstrated in the 

representative fluorescence spectra shown in Fig. S5. With 30 s of UV treatment, the 

fluorescence intensity due to DOX increased to about 1.9 times the initial value (Fig. 2c, 

pink plot) signifying the release of the drug from CD-AuNR-DexAzo complex due to the 

isomerization of the azo component. The DOX fluorescence intensity ratios were also 

maintained between 1.9 and 2.1 throughout the duration of the analysis. In order to find the 

optimum DOX release conditions at a shorter irradiation time, the analysis was carried out 

using 10 s and 5 s of UV exposure. While not quite as much DOX was released for the 

shorter irradiation time as for that of 30 s exposure, the results in Fig. 2c, show that, as with 

the 30 s exposure, most of the DOX release was complete after the first irradiation. Thus in 

further studies, 5 s UV irradiation was used as the exposure time. Furthermore, results of the 

control studies showed that no significant increase in fluorescence intensity ratios was 

observed for the system without UV irradiation, indicating the importance of the capping 

agent for drug release. As a control experiment, UV treatment of the DOX loaded CD-

AuNR without DexAzo did not result in DOX release as shown in Fig. 2c (green plot) 

signifying that UV exposure did not promote DOX release. Taken together, the uncapping of 

DexAzo upon UV irradiation can effectively promote release of DOX cargo from CD.

Next, the nanomaterials were exposed to IR light to determine their potential for 

photothermal therapy. In this case, an aqueous solution of the complex was placed in a glass 

vial and irradiated with a red laser at 800 nm59 which corresponds to the longitudinal surface 

plasmon resonance of AuNR.39 Exposure of the rods to IR light at 800 nm at 1.5 W/cm2 

causes collective oscillation of surface electrons which in turn resulted in localized heating 

phenomenon. In cancer research, this property of gold nanomaterials has been used to 

induce cell death by hyperthermia, typically by inducing temperatures between 41 and 

43 °C.42 To mimic the temperature change under biological conditions, the AuNRs were 

heated to a starting temperature of 37 °C using a heat gun before laser exposure.59 The 

temperature change of the system was then measured using a digital thermometer and the 

results were plotted in Fig. 2d. An average temperature change of 5 °C was determined after 

10 min of laser irradiation, indicating the capability of the CD-AuNR-DexAzo complex for 

photothermal therapy in cancer cells.37, 42

In order to equip the CD-AuNR complex with targeting capability in cancer therapy, a folic 

acid-based ligand was synthesized using a folic acid-PEG-maleimide compound reacted 

with adamantane thiol in DMSO. By this method, the straightforward thiol-maleimide 

“Click” reaction60, 61 was exploited to attach the adamantane group into the folic acid-

terminated moiety to produce the targeting ligand, FA. Upon incubation of FA with CD-

AuNR and DexAzo, the adamantane component was inserted into the CD core and served as 

anchor for the folic acid moiety, generating FA-CD-AuNR-DexAzo. The long PEG spacer 

chain ensured that the targeting group was exposed upon the DexAzo coating in order to 

interact effectively with cancer cells bearing folic acid receptors.62–64 To validate the 

targeting capability of FA, HeLa cells were incubated separately with FA-CD-AuNR-

DexAzo and CD-AuNR-DexAzo. After 4 h of incubation, images of the cells were taken 

using a dark-field microscope. This technique exploits the ability of AuNRs to strongly 

scatter white light (350 – 900 nm)39 to produce a dark-field image of HeLa cells. The results 

of the imaging experiment, shown in Fig. 3a–b, clearly demonstrate the effect of FA on the 
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interaction and selectivity of AuNR complex in cancer cells. For the cells incubated without 

the targeting ligand (Fig. 3a), the rods were randomly distributed and the cells were not 

clearly imaged. In contrast, the cytoplasm of HeLa cells incubated with FA loaded AuNR 

complex was clearly visible as a result of the interaction between the targeting ligand and the 

folic acid receptors (Fig. 3b). The dark-field imaging experiments showed the importance of 

FA as a targeting ligand moiety for selectivity and specificity of the cancer cell recognition.

Next, HeLa cells were incubated with a DOX-loaded FA-CD-AuNR-DexAzo complex for 

4.0 h at 37 °C. After 5 s of UV treatment, the intracellular delivery of DOX was monitored 

by CLSM at different time points. The fluorescence of DOX was clearly observed after 0.5 h 

of incubation which indicates effective internalization of drug carriers (Fig. 3c). When the 

incubation time was extended to 4 h, the fluorescence signal of DOX was displayed inside 

the nucleus as demonstrated by the magenta color in the merged image (Fig. 3d), indicating 

the combined fluorescence of the Hoechst-stained nucleus and DOX. The results of these in 

vitro studies clearly demonstrate the capability of the AuNR complex as drug delivery 

vehicle in HeLa cells.

In order to determine the efficiency of intracellular DOX delivery and release from the 

AuNR complex, a cell viability study was performed using the MTT viability assay. For 

comparison, standard solutions of DOX were also incubated with HeLa cells as well as 

controls containing DOX-free AuNR complex. After addition of different formulations to 

HeLa cells, the culture was incubated for 4 h at 37 °C prior to 5 s UV irradiation. The cells 

were then further incubated for 24.0 h, and then MTT assay was performed. As shown in 

Fig. 4, the DOX-loaded FA-CD-AuNR-DexAzo complex (Fig. 4, red bars) caused a decrease 

in cell survival to 27 ± 4% for the least concentrated formulation (0.25 µM DOX). As the 

amounts of DOX-loaded AuNR complex increased, HeLa cell viability correspondingly 

decreased, down to 20 ± 2% for 4.0 µM DOX, which is remarkably lower viabilities after 

exposure to control solutions of DOX (Fig. 4, black bars). These results can be attributed to 

a more efficient intracellular uptake of DOX-loaded AuNRs through receptor-mediated 

endocytosis compared with free DOX solution. Furthermore, results of control reactions 

suggest that 5 s UV irradiation showed negligible effect on the cell survival. Additionally, 

results of the DOX-loaded AuNR complex without UV irradiation (Fig. 4, gray bars), 

showed insignificant toxicity toward HeLa cells, suggesting that no significant DOX release 

occurred in the absence of the UV trigger. When DOX-free nanorods were incubated with 

HeLa cells and exposed to UV light, the assay results (Fig. 4, blue bars) showed viability of 

approximately 90%, for all nanorod formulations, indicating low cytotoxicity from the 

materials in the AuNR complexes. Similarly, when the formulations containing FA-CD-

AuNR-DexAzo were incubated with HeLa cells without UV treatment, no significant 

decrease in cell viability was observed (Fig. 4, green bars). The results of the MTT cell 

viability assay suggest the efficient intracellular delivery of DOX-loaded AuNR complexes 

and subsequent UV-activated drug release.

To assess the photothermal efficacy of the AuNR complex, IR irradiation was explored using 

a red laser at 800 nm at 1.5 W/cm2 power. The cells were cultured on glass slides and 

incubated with the AuNR complexes for 4 h prior to 10 min IR exposure. To qualitatively 

observe the effect of laser treatment on cell survival, trypan blue was used to stain the slides 
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after irradiation. The results (Fig. S6) of photothermal irradiation showed that for HeLa cells 

incubated with AuNR complex, accumulation of trypan blue dye was evident on the spot 

where the laser was focused indicating cell death by hyperthermia. In contrast, the cells 

outside the laser spot remained viable. In sharp contrast, control experiments using only 

HeLa cells showed no accumulation of trypan blue for the cells treated with laser.

To demonstrate the synergistic effects of UV and IR treatment of multifunctional AuNR 

complex, the HeLa cells were incubated with the DOX-loaded formulation in confocal dish 

for 4.0 h at 37 °C. Thereafter, the cells were divided into two zones; the right half was 

covered with aluminum foil (no UV or IR exposure) while the left half was exposed to 5 s 

UV and 10 min IR laser treatments (Fig. 5). A live-dead cell assay65 was used to visualize 

the viability of HeLa cells via fluorescence microscopy wherein a bright red fluorescence 

from ethidium homodimer-1 indicates dead cells while an intense green fluorescence from 

polyionic dye calcein indicates live cells. The results (Fig. 5a) showed that for HeLa cells 

incubated with DOX-loaded FA-CD-AuNR-DexAzo and then treated with both UV and IR 

lights, bright red fluorescence predominates, indicating the presence of dead cells. In 

contrast, the cells in the right panel remained viable as shown by the intense green 

fluorescence. As a control system, HeLa cells incubated with DOX-loaded FA-CD-AuNR-

DexAzo, were exposed separately with IR or UV only. As shown in Fig. 5b & c, minimal 

dead cells were observed after IR and UV exposure, respectively; although there were some 

dead cells at the boundary of the unexposed region of Fig. 5b, which can be attributed to 

heat diffusion. Taken together, the synergistic effect of UV and IR irradiation on the DOX-

loaded AuNRs increases anticancer therapeutic impact, indicating the potential for 

spatiotemporal drug delivery and photothermal therapy.

Conclusions

In summary, we have developed a multifunctional AuNR complex with diagnostic function 

through dark-field imaging and synergistic drug delivery and photothermal therapy induced 

using two distinct wavelengths of light. The surface functionalization of the AuNRs with CD 

provide a mechanism for encapsulating DOX with high efficiency and for attaching a 

targeting ligand which ensures intracellular uptake and drug delivery to the cancer cells. 

Meanwhile, the combined effects of UV-triggered DOX release and IR-induced 

hyperthermia show enhanced therapeutic efficacy against cancer cells with spatiotemporal 

control. Furthermore, the imaging applications of the AuNR complex provide the potential 

for simultaneous cancer detection and treatment in a single formulation. Taken together, the 

straightforward synthetic protocol, high drug loading capacity, light-activated drug release 

and PTT, and dark-field diagnostics of the multifunctional AuNR complex demonstrate a 

promising new approach for cancer theranostics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Schematic representation of the multifunctional AuNR complex for UV-triggered drug 

delivery and IR-induced photothermal therapy (PTT) and cell imaging. B) Intracellular 

delivery of the AuNR complex and the dual-light synergistic effects of DOX release and 

hyperthermia resulting in apoptosis.
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Figure 2. 
A) Characterization of AuNRs after each functionalization step using UV-vis analysis. B) 

TEM image of CD-AuNR-DexAzo complex showing full encapsulation of the rods by 

DexAzo (scale bar = 50 nm). C) The UV-triggered drug release from DOX-loaded CD-

AuNR-DexAzo was evaluated at different irradiation times (0, 5, 10 and 30 s) and monitored 

using DOX fluorescence scanning at 0, 5, 10, 20 and 30 min after irradiation. Error bars 

indicate the mean ± SD (n = 3). D) The IR-induced hyperthermia of CD-AuNR-DexAzo 

complex was monitored by direct temperature measurement using digital thermometer. The 

nanorods solution was heated to 37 °C prior to laser irradiation. Error bars indicate the mean 

± SD (n = 3).
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Figure 3. 
In vitro studies using HeLa cells. Dark-field images of HeLa cells incubated with AuNR-

DexAzo complex for 4.0 h at 37 °C: A) without FA targeting ligand and B) with FA 

targeting ligand (Scale bars: 10 µm). Intracellular delivery of DOX in HeLa cells was 

observed using confocal laser scanning microscope (CLSM) after incubation with DOX-

loaded FA-CD-AuNR-DexAzo at 37 °C for C) 0.5 h and D) 4.0 h (Scale bars: 20 µm). The 

cells were stained by LysoTracker Green solution for 30 min and Hoechst 33342 solution for 

10 min prior to CLSM imaging.
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Figure 4. 
Cell viability studies using HeLa cells as model system for intracellular drug delivery of the 

multifunctional AuNR complex. HeLa cells were incubated with different formulations of 

the DOX-loaded AuNR complex and control systems. Error bars indicate the mean ± SD (n 

= 5).
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Figure 5. 
Schematic diagram of the localized UV and IR irradiation to trigger the synergistic effects of 

DOX release and PTT. The right half of the confocal dish is covered with aluminum foil (no 

exposure) while the left half was exposed to UV and/or IR treatment. Fluorescence 

microscopy images of live (green) and dead (red) HeLa cells after incubation with DOX-

loaded AuNR-DexAzo complex for 4.0 h at 37 °C and exposed to A) UV and IR lights, B) 

IR light only and C) UV light only. Scale bars: 200 µm.
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