15 research outputs found

    Clinical Guides for aHUS

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In 2013, we developed diagnostic criteria to enable early diagnosis and timely initiation of appropriate treatment for aHUS. Recent clinical and molecular findings have resulted in several proposed classifications and definitions of thrombotic microangiopathy and aHUS. Based on recent advances in this field and the emerging international consensus to exclude secondary TMAs from the definition of aHUS, we have redefined aHUS and proposed diagnostic algorithms, differential diagnosis, and therapeutic strategies for aHUS

    A review of clinical characteristics and genetic backgrounds in Alport syndrome

    Get PDF
    Alport syndrome (AS) is a progressive hereditary renal disease that is characterized by sensorineural hearing loss and ocular abnormalities. It is divided into three modes of inheritance, namely, X-linked Alport syndrome (XLAS), autosomal recessive AS (ARAS), and autosomal dominant AS (ADAS). XLAS is caused by pathogenic variants in COL4A5, while ADAS and ARAS are caused by those in COL4A3/COL4A4. Diagnosis is conventionally made pathologically, but recent advances in comprehensive genetic analysis have enabled genetic testing to be performed for the diagnosis of AS as first-line diagnosis. Because of these advances, substantial information about the genetics of AS has been obtained and the genetic background of this disease has been revealed, including genotype–phenotype correlations and mechanisms of onset in some male XLAS cases that lead to milder phenotypes of late-onset end-stage renal disease (ESRD). There is currently no radical therapy for AS and treatment is only performed to delay progression to ESRD using nephron-protective drugs. Angiotensin-converting enzyme inhibitors can remarkably delay the development of ESRD. Recently, some new drugs for this disease have entered clinical trials or been developed in laboratories. In this article, we review the diagnostic strategy, genotype–phenotype correlation, mechanisms of onset of milder phenotypes, and treatment of AS, among others

    Bevacizumab の関与が示唆された巣状分節性糸球体硬化症の1 例

    No full text

    An in vitro splicing assay reveals the pathogenicity of a novel intronic variant in ATP6V0A4 for autosomal recessive distal renal tubular acidosis

    Get PDF
    Abstract Background Autosomal recessive distal renal tubular acidosis (dRTA) is a rare hereditary disease caused by pathogenic variants in the ATP6V0A4 gene or ATP6V1B1 gene, and characterized by hyperchloremic metabolic acidosis with normal anion gap, hypokalemia, hypercalciuria, hypocitraturia and nephrocalcinosis. Although several intronic nucleotide variants in these genes have been detected, all of them fell in the apparent splice consensus sequence. In general, transcriptional analysis is necessary to determine the effect on function of the novel intronic variants located out of splicing consensus sequences. In recent years, functional splicing analysis using minigene construction was used to assess the pathogenicity of novel intoronic variant in various field. Methods We investigated a sporadic case of dRTA with a compound heterozygous mutation in the ATP6V0A4 gene, revealed by next generation sequencing. One variant was already reported as pathogenic; however, the other was a novel variant in intron 11 (c.1029 + 5G > A) falling outside of the apparent splicing consensus sequence. Expression of ATP6V0A4 was not detected in peripheral leukocytes by RT-PCR analysis. Therefore, an in vitro functional splicing study using minigene construction was conducted to analyze the splicing pattern of the novel variant. Results A minigene assay revealed that the novel intronic variant leads to a 104 bp insertion immediately following exon 11. In addition, this result was confirmed using RNA extracted from the patient’s cultured leukocytes. Conclusion These results proved the pathogenicity of a novel intronic variant in our patient. We concluded that the minigene assay is a useful, non-invasive method for functional splicing analysis of inherited kidney disease, even if standard transcriptional analysis could not detect abnormal mRNA

    Glomerular galactose-deficient IgA1 expression analysis in pediatric patients with glomerular diseases

    Get PDF
    Abstract Galactose-deficient IgA1 (Gd-IgA1) is important in the pathogenesis of IgA nephropathy (IgAN). A Gd-IgA1-specific monoclonal antibody (KM55) has revealed glomerular Gd-IgA1 deposition solely in patients with IgAN and IgA vasculitis with nephritis (IgAV-N). However, this specificity is controversial and has not been demonstrated in pediatric patients. Here, we conducted double-immunofluorescence staining of IgA and Gd-IgA1 in 60 pediatric patients with various glomerular diseases. We divided patients into four groups: (1) patients with IgAN and IgAV-N (n = 23); (2) patients with immunocomplex-mediated glomerulonephritis accompanied by IgA deposition, including lupus nephritis, membranoproliferative glomerulonephritis, and membranous nephropathy (n = 14); (3) patients with other glomerular diseases involving IgA deposition, including idiopathic nephrotic syndrome (INS), oligomeganephronia, Alport syndrome, dense deposit disease, and crescentic glomerulonephritis (n = 11); and (4) patients with IgA-negative diseases including INS, membranoproliferative glomerulonephritis, membranous nephropathy, oligomeganephronia, Alport syndrome, C3 glomerulonephritis, poststreptococcal acute glomerulonephritis, and hemolytic uremic syndrome (n = 12). KM55 staining revealed Gd-IgA1-positive findings in 23/23 patients in Group 1 and 13/14 patients in Group 2, but not in patients in Groups 3 or 4. Therefore, KM55 may detect incidental IgA deposition in pediatric patients. Gd-IgA1 may be involved in the pathogenesis of these immune-related diseases; alternatively, KM55 may recognize IgA-related immunocomplexes in a non-specific manner
    corecore