28 research outputs found

    Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning

    Get PDF
    Late endosomes (LEs) have characteristic intracellular distributions determined by their interactions with various motor proteins. Motor proteins associated to the dynactin subunit p150Glued bind to LEs via the Rab7 effector Rab7-interacting lysosomal protein (RILP) in association with the oxysterol-binding protein ORP1L. We found that cholesterol levels in LEs are sensed by ORP1L and are lower in peripheral vesicles. Under low cholesterol conditions, ORP1L conformation induces the formation of endoplasmic reticulum (ER)–LE membrane contact sites. At these sites, the ER protein VAP (VAMP [vesicle-associated membrane protein]-associated ER protein) can interact in trans with the Rab7–RILP complex to remove p150Glued and associated motors. LEs then move to the microtubule plus end. Under high cholesterol conditions, as in Niemann-Pick type C disease, this process is prevented, and LEs accumulate at the microtubule minus end as the result of dynein motor activity. These data explain how the ER and cholesterol control the association of LEs with motor proteins and their positioning in cells

    Tau biomarkers in Alzheimer's disease: towards implementation in clinical practice and trials

    No full text
    Background: Deposition of tau aggregates is a pathological hallmark of Alzheimer's disease that is closely linked both spatially and temporally to emergence of neurodegeneration and manifestation of clinical symptoms. There is an urgent need for accurate PET, CSF, and plasma biomarkers of tau pathology to improve the diagnostic process in clinical practice and the selection of participants and monitoring of treatment effects in trials. Recent developments: Innovative second-generation tau-PET tracers with high affinity and selectivity to tau pathology in Alzheimer's disease have enabled detection of tau pathology in medial temporal lobe subregions that are affected in the earliest disease stages. Furthermore, novel but common tau spreading subtypes have been discovered using tau-PET, suggesting much greater interindividual differences in the distribution of tau pathology across the brain than previously assumed. In the CSF biomarker field, novel phosphorylated tau (p-tau) assays have been introduced that better reflect tau tangle load than established CSF biomarkers of tau pathology. The advent of cost-effective and accessible blood-based biomarkers for tau pathophysiology (ie, p-tau181, p-tau217, and p-tau231) might transform the Alzheimer's disease field, as these biomarkers correlate with post-mortem Alzheimer's disease pathology, differentiate Alzheimer's disease from other types of dementia, and predict future progression from normal cognition and mild cognitive impairment to Alzheimer's disease. In controlled investigational settings, improvements in tau-PET and biofluid p-tau markers have led to earlier disease detection, more accurate diagnostic methods, and refinement of prognosis. The anti-tau therapy landscape is rapidly evolving, with multiple ongoing phase 1 and 2 trials of post-translational modification of tau, tau immunotherapy, tau aggregation inhibitors, and targeting production of tau and reduction of intracellular tau levels. Neuroimaging and biofluid tau markers hold potential for optimising such clinical trials by augmenting participant selection, providing evidence of target engagement, and monitoring treatment efficacy. Where next?: Major challenges to overcome are the high cost of tau-PET, partial sensitivity to detect early-stage Alzheimer's disease pathology, and off-target tracer binding. Prospective validation studies of biofluid p-tau markers are needed, and assay-related preanalytical and analytical factors need further refinement. Future studies should focus on demonstrating the diagnostic and prognostic accuracy of tau biomarkers—blood-based markers in particular—in non-tertiary settings, such as primary care, which is characterised by a diverse population with medical comorbidities. Large-scale head-to-head studies are needed across different stages of Alzheimer's disease to determine which tau biomarker is optimal in various clinical scenarios, such as early diagnosis, differential diagnosis, and prognosis, and for aspects of clinical trial design, such as proving target engagement, optimising participant selection, and refining monitoring of treatment effects

    Tau biomarkers in Alzheimer's disease : towards implementation in clinical practice and trials

    No full text
    Background: Deposition of tau aggregates is a pathological hallmark of Alzheimer's disease that is closely linked both spatially and temporally to emergence of neurodegeneration and manifestation of clinical symptoms. There is an urgent need for accurate PET, CSF, and plasma biomarkers of tau pathology to improve the diagnostic process in clinical practice and the selection of participants and monitoring of treatment effects in trials. Recent developments: Innovative second-generation tau-PET tracers with high affinity and selectivity to tau pathology in Alzheimer's disease have enabled detection of tau pathology in medial temporal lobe subregions that are affected in the earliest disease stages. Furthermore, novel but common tau spreading subtypes have been discovered using tau-PET, suggesting much greater interindividual differences in the distribution of tau pathology across the brain than previously assumed. In the CSF biomarker field, novel phosphorylated tau (p-tau) assays have been introduced that better reflect tau tangle load than established CSF biomarkers of tau pathology. The advent of cost-effective and accessible blood-based biomarkers for tau pathophysiology (ie, p-tau181, p-tau217, and p-tau231) might transform the Alzheimer's disease field, as these biomarkers correlate with post-mortem Alzheimer's disease pathology, differentiate Alzheimer's disease from other types of dementia, and predict future progression from normal cognition and mild cognitive impairment to Alzheimer's disease. In controlled investigational settings, improvements in tau-PET and biofluid p-tau markers have led to earlier disease detection, more accurate diagnostic methods, and refinement of prognosis. The anti-tau therapy landscape is rapidly evolving, with multiple ongoing phase 1 and 2 trials of post-translational modification of tau, tau immunotherapy, tau aggregation inhibitors, and targeting production of tau and reduction of intracellular tau levels. Neuroimaging and biofluid tau markers hold potential for optimising such clinical trials by augmenting participant selection, providing evidence of target engagement, and monitoring treatment efficacy. Where next?: Major challenges to overcome are the high cost of tau-PET, partial sensitivity to detect early-stage Alzheimer's disease pathology, and off-target tracer binding. Prospective validation studies of biofluid p-tau markers are needed, and assay-related preanalytical and analytical factors need further refinement. Future studies should focus on demonstrating the diagnostic and prognostic accuracy of tau biomarkers—blood-based markers in particular—in non-tertiary settings, such as primary care, which is characterised by a diverse population with medical comorbidities. Large-scale head-to-head studies are needed across different stages of Alzheimer's disease to determine which tau biomarker is optimal in various clinical scenarios, such as early diagnosis, differential diagnosis, and prognosis, and for aspects of clinical trial design, such as proving target engagement, optimising participant selection, and refining monitoring of treatment effects

    Amyloid-β-independent regulators of tau pathology in Alzheimer disease

    No full text
    The global epidemic of Alzheimer disease (AD) is worsening, and no approved treatment can revert or arrest progression of this disease. AD pathology is characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain. Genetic data, as well as autopsy and neuroimaging studies in patients with AD, indicate that Aβ plaque deposition precedes cortical tau pathology. Because Aβ accumulation has been considered the initial insult that drives both the accumulation of tau pathology and tau-mediated neurodegeneration in AD, the development of AD therapeutics has focused mostly on removing Aβ from the brain. However, striking preclinical evidence from AD mouse models and patient-derived human induced pluripotent stem cell models indicates that tau pathology can progress independently of Aβ accumulation and arises downstream of genetic risk factors for AD and aberrant metabolic pathways. This Review outlines novel insights from preclinical research that implicate apolipoprotein E, the endocytic system, cholesterol metabolism and microglial activation as Aβ-independent regulators of tau pathology. These factors are discussed in the context of emerging findings from clinical pathology, functional neuroimaging and other approaches in humans. Finally, we discuss the implications of these new insights for current Aβ-targeted strategies and highlight the emergence of novel therapeutic strategies that target processes upstream of both Aβ and tau

    Cholesterol and Alzheimer’s Disease; From Risk Genes to Pathological Effects

    No full text
    While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body’s cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer’s disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer’s disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems

    Advantages and limitations of hiPSC-derived neurons for the study of neurodegeneration

    No full text
    Neurodegenerative diseases, such as Alzheimer's disease (AD), are expensive, common, and will likely increase as the population ages. The lack of significant therapeutic development indicates that further research is needed on various cellular mechanisms that contribute to neurodegeneration. Human-induced pluripotent stem cell (hiPSC) technology has provided living, dynamic cellular models to address this challenge. Here, we discuss these models in the context of AD and related dementias and review the insights these models have made into disease mechanisms. We include discussion of genetic forms of AD and strong AD risk factors and discuss how these are modeled in both two-dimensional cultures and three-dimensional cerebral organoids. We address the limitations of the system, in particular how to incorporate brain aging, and we summarize drug discovery efforts using hiPSC-derived neurons

    Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization

    No full text
    Amyloid beta (Aβ) is a major component of amyloid plaques, which are a key pathological hallmark found in the brains of Alzheimer's disease (AD) patients. We show that statins are effective at reducing Aβ in human neurons from nondemented control subjects, as well as subjects with familial AD and sporadic AD. Aβ is derived from amyloid precursor protein (APP) through sequential proteolytic cleavage by BACE1 and γ-secretase. While previous studies have shown that cholesterol metabolism regulates APP processing to Aβ, the mechanism is not well understood. We used iPSC-derived neurons and bimolecular fluorescence complementation assays in transfected cells to elucidate how altering cholesterol metabolism influences APP processing. Altering cholesterol metabolism using statins decreased the generation of sAPPβ and increased levels of full-length APP (flAPP), indicative of reduced processing of APP by BACE1. We further show that statins decrease flAPP interaction with BACE1 and enhance APP dimerization. Additionally, statin-induced changes in APP dimerization and APP-BACE1 are dependent on cholesterol binding to APP. Our data indicate that statins reduce Aβ production by decreasing BACE1 interaction with flAPP and suggest that this process may be regulated through competition between APP dimerization and APP cholesterol binding

    Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity

    No full text
    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway

    GPR43 Potentiates β-Cell Function in Obesity.

    No full text
    The intestinal microbiome can regulate host energy homeostasis and the development of metabolic disease. Here we identify GPR43, a receptor for bacterially produced short-chain fatty acids (SCFAs), as a modulator of microbiota-host interaction. β-Cell expression of GPR43 and serum levels of acetate, an endogenous SCFA, are increased with a high-fat diet (HFD). HFD-fed GPR43 knockout (KO) mice develop glucose intolerance due to a defect in insulin secretion. In vitro treatment of isolated murine islets, human islets, and Min6 cells with (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide (PA), a specific agonist of GPR43, increased intracellular inositol triphosphate and Ca(2+) levels, and potentiated insulin secretion in a GPR43-, Gαq-, and phospholipase C-dependent manner. In addition, KO mice fed an HFD displayed reduced β-cell mass and expression of differentiation genes, and the treatment of Min6 cells with PA increased β-cell proliferation and gene expression. Together these findings identify GPR43 as a potential target for therapeutic intervention
    corecore