167 research outputs found

    Quantitative Analysis of Immunoglobulin E Reactivity Profiles in Patients Allergic or Sensitized to Natural Rubber Latex (Hevea Brasiliensis)

    Get PDF
    Characterized native and recombinant Hevea brasiliensis (rHev b) natural rubber latex (NRL) allergens are available to assess patient allergen sensitization profiles. OBJECTIVE: Quantification of individual IgE responses to the spectrum of documented NRL allergens and evaluation of cross-reactive carbohydrate determinants (CCDs) for more definitive diagnosis. METHODS: Sera of 104 healthcare workers (HCW; 51 German, 21 Portuguese, 32 American), 31 spina bifida patients (SB; 11 German, 20 Portuguese) and 10 Portuguese with multiple surgeries (MS) were analysed for allergen-specific IgE antibody (sIgE) to NRL, single Hev b allergens and CCDs with ImmunoCAP technology. RESULTS: In all patient groups rHev b 5-sIgE concentrations were the most pronounced. Hev b 2, 5, 6.01 and 13 were identified as the major allergens in HCW and combined with Hev b 1 and Hev b 3 in SB. In MS Hev b 1 displayed an intermediate relevance. Different sIgE antibody levels to native Hevea brasiliensis (nHev b) 2 and rHev b 6.01 allowed discrimination of SB with clinical relevant latex allergy vs. those with latex sensitization. Sensitization profiles of German, Portuguese and American patients were equivalent. rHev b 5, 6.01 and nHev b 13 combined detected 100% of the latex-allergic HCW and 80.1% of the SB. Only 8.3% of the sera showed sIgE response to CCDs. CONCLUSIONS: Hev b 1, 2, 5, 6.01 and 13 were identified as the major Hev b allergens and they should be present in standardized latex extracts and in vitro allergosorbents. CCDs are only of minor relevance in patients with clinical relevant latex allergy. Component-resolved diagnostic analyses for latex allergy set the stage for an allergen-directed immunotherapy strateg

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al

    Oscillatory neural signatures of visual perception across developmental stages in individuals with 22q11.2 deletion syndrome

    Get PDF
    Background: Numerous behavioral studies have highlighted the contribution of visual perceptual deficits to the nonverbal cognitive profile of individuals with 22q11.2 deletion syndrome. However, the neurobiological processes underlying these widespread behavioral alterations are yet to be fully understood. Thus, in this paper, we investigated the role of neural oscillations toward visuoperceptual deficits to elucidate the neurobiology of sensory impairments in deletion carriers. Methods: We acquired 125 high-density electroencephalography recordings during a visual grating task in a group of 62 deletion carriers and 63 control subjects. Stimulus-elicited oscillatory responses were analyzed with 1) time-frequency analysis using wavelets decomposition at sensor and source level, 2) intertrial phase coherence, and 3) Granger causality connectivity in source space. Additional analyses examined the development of neural oscillations across age bins. Results: Deletion carriers had decreased theta-band (4–8 Hz) and gamma-band (58–68 Hz) spectral power compared with control subjects in response to the visual stimuli, with an absence of age-related increase of theta- and gamma-band responses. Moreover, adult deletion carriers had decreased gamma- and theta-band responses but increased alpha/beta desynchronization (10–25 Hz) that correlated with behavioral performance. Granger causality estimates reflected an increased frontal-occipital connectivity in the beta range (22–40 Hz). Conclusions: Deletion carriers exhibited decreased theta- and gamma-band responses to visual stimuli, while alpha/beta desynchronization was preserved. Overall, the lack of age-related changes in deletion carriers implicates developmental impairments in circuit mechanisms underlying neural oscillations. The dissociation between the maturation of theta/gamma- and alpha/beta-band responses may indicate a selective impairment in supragranular cortical layers, leading to compensatory top-down connectivity

    Long-term effects of cranial irradiation and intrathecal chemotherapy in treatment of childhood leukemia: a MEG study of power spectrum and correlated cognitive dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prophylaxis to prevent relapses in the central nervous system after childhood acute lymphoblastic leukemia (ALL) used to consist of both intrathecal chemotherapy (CT) and cranial irradiation (CRT). CRT was mostly abolished in the eighties because of its neurotoxicity, and replaced with more intensive intrathecal CT. In this study, a group of survivors treated with CRT before 1983 and another group treated without CRT thereafter are investigated 20–25 years later, giving a much stronger perspective on long-term quality of life than previous studies. The outcomes will help to better understand these groups’ current needs and will aid in anticipating late effects of prophylactic CRT that is currently applied for other diseases. This study evaluates oscillatory neuronal activity in these long-term survivors. Power spectrum deviations are hypothesized to correlate with cognitive dysfunction.</p> <p>Methods</p> <p>Resting state eyes-closed magnetoencephalography (MEG) recordings were obtained from 14 ALL survivors treated with CT + CRT, 18 treated with CT alone and 35 controls. Relative spectral power was calculated in the δ, θ, α1, α2, β and γ frequency bands. The Amsterdam Neuropsychological Tasks (ANT) program was used to assess cognition in the executive functions domain. MEG data and ANT scores were correlated.</p> <p>Results</p> <p>In the CT + CRT group, relative θ power was slightly increased (p = 0.069) and α2 power was significantly decreased (p = 0.006). The CT + CRT group performed worse on various cognitive tests. A deficiency in visuomotor accuracy, especially of the right hand, could be clearly associated with the deviating regional θ and α2 powers (0.471 < r < 0.697). A significant association between decreased regional α2 power and less attentional fluctuations was found for CT + CRT patients as well as controls (0.078 < r < 0.666). Patients treated with CT alone displayed a power spectrum similar to controls, except for a significantly increased level of left frontal α2 power (p = 0.030).</p> <p>Conclusions</p> <p>The tendency towards global slowing of brain oscillatory activity, together with the fact that dementia has been reported as a late effect of CRT and the neuropsychological deficiencies currently present, suggest that the irradiated brain might be aging faster and could be at risk for early‐onset dementia. The CT group showed no signs of early aging.</p

    Pre-Stimulus Activity Predicts the Winner of Top-Down vs. Bottom-Up Attentional Selection

    Get PDF
    Our ability to process visual information is fundamentally limited. This leads to competition between sensory information that is relevant for top-down goals and sensory information that is perceptually salient, but task-irrelevant. The aim of the present study was to identify, from EEG recordings, pre-stimulus and pre-saccadic neural activity that could predict whether top-down or bottom-up processes would win the competition for attention on a trial-by-trial basis. We employed a visual search paradigm in which a lateralized low contrast target appeared alone, or with a low (i.e., non-salient) or high contrast (i.e., salient) distractor. Trials with a salient distractor were of primary interest due to the strong competition between top-down knowledge and bottom-up attentional capture. Our results demonstrated that 1) in the 1-sec pre-stimulus interval, frontal alpha (8–12 Hz) activity was higher on trials where the salient distractor captured attention and the first saccade (bottom-up win); and 2) there was a transient pre-saccadic increase in posterior-parietal alpha (7–8 Hz) activity on trials where the first saccade went to the target (top-down win). We propose that the high frontal alpha reflects a disengagement of attentional control whereas the transient posterior alpha time-locked to the saccade indicates sensory inhibition of the salient distractor and suppression of bottom-up oculomotor capture

    Transcriptional Activity and Nuclear Localization of Cabut, the Drosophila Ortholog of Vertebrate TGF-β-Inducible Early-Response Gene (TIEG) Proteins

    Get PDF
    BackgroundCabut (Cbt) is a C2H2-class zinc finger transcription factor involved in embryonic dorsal closure, epithelial regeneration and other developmental processes in Drosophila melanogaster. Cbt orthologs have been identified in other Drosophila species and insects as well as in vertebrates. Indeed, Cbt is the Drosophila ortholog of the group of vertebrate proteins encoded by the TGF-ß-inducible early-response genes (TIEGs), which belong to Sp1-like/Krüppel-like family of transcription factors. Several functional domains involved in transcriptional control and subcellular localization have been identified in the vertebrate TIEGs. However, little is known of whether these domains and functions are also conserved in the Cbt protein.Methodology/Principal FindingsTo determine the transcriptional regulatory activity of the Drosophila Cbt protein, we performed Gal4-based luciferase assays in S2 cells and showed that Cbt is a transcriptional repressor and able to regulate its own expression. Truncated forms of Cbt were then generated to identify its functional domains. This analysis revealed a sequence similar to the mSin3A-interacting repressor domain found in vertebrate TIEGs, although located in a different part of the Cbt protein. Using β-Galactosidase and eGFP fusion proteins, we also showed that Cbt contains the bipartite nuclear localization signal (NLS) previously identified in TIEG proteins, although it is non-functional in insect cells. Instead, a monopartite NLS, located at the amino terminus of the protein and conserved across insects, is functional in Drosophila S2 and Spodoptera exigua Sec301 cells. Last but not least, genetic interaction and immunohistochemical assays suggested that Cbt nuclear import is mediated by Importin-α2.Conclusions/SignificanceOur results constitute the first characterization of the molecular mechanisms of Cbt-mediated transcriptional control as well as of Cbt nuclear import, and demonstrate the existence of similarities and differences in both aspects of Cbt function between the insect and the vertebrate TIEG proteins

    Observational Learning of New Movement Sequences Is Reflected in Fronto-Parietal Coherence

    Get PDF
    Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10Hz frequency range for translating “seeing” into “doing”. Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational learning (i.e. parts of the MNS as reflected in 10Hz coherence measures) and peripheral structures (i.e. lateral occipital gyrus for alpha; central sulcus for mu) that provide low-level support for observation and motor imagery of action sequences

    The international Perinatal Outcomes in the Pandemic (iPOP) study: protocol

    Get PDF
    Preterm birth is the leading cause of infant death worldwide, but the causes of preterm birth are largely unknown. During the early COVID-19 lockdowns, dramatic reductions in preterm birth were reported; however, these trends may be offset by increases in stillbirth rates. It is important to study these trends globally as the pandemic continues, and to understand the underlying cause(s). Lockdowns have dramatically impacted maternal workload, access to healthcare, hygiene practices, and air pollution - all of which could impact perinatal outcomes and might affect pregnant women differently in different regions of the world. In the international Perinatal Outcomes in the Pandemic (iPOP) Study, we will seize the unique opportunity offered by the COVID-19 pandemic to answer urgent questions about perinatal health. In the first two study phases, we will use population-based aggregate data and standardized outcome definitions to: 1) Determine rates of preterm birth, low birth weight, and stillbirth and describe changes during lockdowns; and assess if these changes are consistent globally, or differ by region and income setting, 2) Determine if the magnitude of changes in adverse perinatal outcomes during lockdown are modified by regional differences in COVID-19 infection rates, lockdown stringency, adherence to lockdown measures, air quality, or other social and economic markers, obtained from publicly available datasets. We will undertake an interrupted time series analysis covering births from January 2015 through July 2020. The iPOP Study will involve at least 121 researchers in 37 countries, including obstetricians, neonatologists, epidemiologists, public health researchers, environmental scientists, and policymakers. We will leverage the most disruptive and widespread “natural experiment” of our lifetime to make rapid discoveries about preterm birth. Whether the COVID-19 pandemic is worsening or unexpectedly improving perinatal outcomes, our research will provide critical new information to shape prenatal care strategies throughout (and well beyond) the pandemic
    corecore