322 research outputs found
Hydrothermal waves in evaporating sessile drops (APS 2009)
This fluid dynamics video was submitted to the Gallery of Fluid Motion for
the 2009 APS Division of Fluid Dynamics Meeting in Minneapolis, Minnesota. Drop
evaporation is a simple phenomena but still unclear concerning the mechanisms
of evaporation. A common agreement of the scientific community based on
experimental and numerical work evidences that most of the evaporation occurs
at the triple line. However, the rate of evaporation is still empirically
predicted due to the lack of knowledge on the convection cells which develop
inside the drop under evaporation. The evaporation of sessile drop is more
complicated than it appears due to the coupling by conduction with the heating
substrate, the convection and conduction inside the drop and the convection and
diffusion with the vapour phase. The coupling of heat transfer in the three
phases induces complicated cases to solve even for numerical simulations. We
present recent experimental fluid dynamics videos obtained using a FLIR SC-6000
coupled with a microscopic lens of 10 microns of resolution to observe the
evaporation of sessile drops in infrared wavelengths. The range of 3 to 5
microns is adapted to the fluids observed which are ethanol, methanol and FC-72
since they are all half-transparent to the infrared.Comment: 4 page
Comment on Photothermal radiometry parametric identifiability theory for reliable and unique nondestructive coating thickness and thermophysical measurements, J. Appl. Phys. 121(9), 095101 (2017)
A recent paper [X. Guo, A. Mandelis, J. Tolev and K. Tang, J. Appl. Phys.,
121, 095101 (2017)] intends to demonstrate that from the photothermal
radiometry signal obtained on a coated opaque sample in 1D transfer, one should
be able to identify separately the following three parameters of the coating:
thermal diffusivity, thermal conductivity and thickness. In this comment, it is
shown that the three parameters are correlated in the considered experimental
arrangement, the identifiability criterion is in error and the thickness
inferred therefrom is not trustable.Comment: 3 page
Pivotal estimation in high-dimensional regression via linear programming
We propose a new method of estimation in high-dimensional linear regression
model. It allows for very weak distributional assumptions including
heteroscedasticity, and does not require the knowledge of the variance of
random errors. The method is based on linear programming only, so that its
numerical implementation is faster than for previously known techniques using
conic programs, and it allows one to deal with higher dimensional models. We
provide upper bounds for estimation and prediction errors of the proposed
estimator showing that it achieves the same rate as in the more restrictive
situation of fixed design and i.i.d. Gaussian errors with known variance.
Following Gautier and Tsybakov (2011), we obtain the results under weaker
sensitivity assumptions than the restricted eigenvalue or assimilated
conditions
Measurements of proton-induced reactions on ruthenium-96 in the ESR at GSI
8th International Conference on Nuclear Physics at Storage Rings Stori11, October 9-14, 2011 Laboratori Nazionale di Frascati, Italy.
Storage rings offer the possibility of measuring proton- and alpha-induced reactions in inverse kinematics. The combination of this approachwith a radioactive beamfacility allows, in principle, the determination of the respective cross sections for radioactive isotopes. Such data are highly desired for a better understanding of astrophysical nucleosynthesis processes like the p-process. A pioneering experiment has been performed at the Experimental Storage Ring (ESR) at GSI using a stable 96Ru beam at 9-11 AMeV and a hydrogen target. Monte-Carlo simulations of the experiment were made using the Geant4 code. In these simulations, the experimental setup is described in detail and all reaction channels can be investigated. Based on the Geant4 simulations, a prediction of the shape of different spectral components can be performed. A comparison of simulated predictions with the experimental results shows a good agreement and allows the extraction of the cross section
Coulomb breakup of neutron-rich Na isotopes near the island of inversion
First results are reported on the ground state configurations of the
neutron-rich Na isotopes, obtained via Coulomb dissociation (CD)
measurements as a method of the direct probe. The invariant mass spectra of
those nuclei have been obtained through measurement of the four-momentum of all
decay products after Coulomb excitation on a target at energies of
400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated
Coulomb-dissociation cross-sections (CD) of 89 mb and 167 mb up to
excitation energy of 10 MeV for one neutron removal from Na and
Na respectively, have been extracted. The major part of one neutron
removal, CD cross-sections of those nuclei populate core, in its' ground state.
A comparison with the direct breakup model, suggests the predominant occupation
of the valence neutron in the ground state of Na and
Na is the orbital with small contribution in the
-orbital which are coupled with ground state of the core. The ground state
configurations of these nuclei are as Na_{gs (1^+)\otimes\nu_{s,d} and
Na, respectively. The ground state spin
and parity of these nuclei, obtained from this experiment are in agreement with
earlier reported values. The spectroscopic factors for the valence neutron
occupying the and orbitals for these nuclei in the ground state have
been extracted and reported for the first time. A comparison of the
experimental findings with the shell model calculation using MCSM suggests a
lower limit of around 4.3 MeV of the sd-pf shell gap in Na.Comment: Modified version of the manuscript is accepted for publication in
Journal of Physics G, Jan., 201
Quadrupole deformations of neutron-drip-line nuclei studied within the Skyrme Hartree-Fock-Bogolyubov approach
We introduce a local-scaling point transformation to allow for modifying the
asymptotic properties of the deformed three-dimensional Cartesian harmonic
oscillator wave functions. The resulting single-particle bases are very well
suited for solving the Hartree-Fock-Bogoliubov equations for deformed drip-line
nuclei. We then present results of self-consistent calculations performed for
the Mg isotopes and for light nuclei located near the two-neutron drip line.
The results suggest that for all even-even elements with =10--18 the most
weakly-bound nucleus has an oblate ground-state shape.Comment: 20 pages, 7 figure
Verification of passive cooling techniques in the Super-FRS beam collimators
The Super FRagment Separator (Super-FRS) at the FAIR facility will be the largest in-flight separator of heavy ions in the world. One of the essential steps in the separation procedure is to stop the unwanted ions with beam collimators. In one of the most common situations, the heavy ions are produced by a fission reaction of a primary 238U-beam (1.5 GeV/u) hitting a 12C target (2.5 g/cm^2). In this situation, some of the produced ions are highly charged states of 238U. These ions can reach the collimators with energies of up to 1.3 GeV/u and a power of up to 500 W. Under these conditions, a cooling system is required to prevent damage to the collimators and to the corresponding electronics. Due to the highly radioactive environment, both the collimators and the cooling system must be suitable for robot handling. Therefore, an active cooling system is undesirable because of the increased possibility of malfunctioning and other complications. By using thermal simulations (performed with NX9 of Siemens PLM), the possibility of passive cooling is explored. The validity of these simulations is tested by independent comparison with other simulation programs and by experimental verification. The experimental verification is still under analysis, but preliminary results indicate that the explored passive cooling option provides sufficient temperature reduction
- …