114 research outputs found

    X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars

    Full text link
    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and σ\sigma-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar_{star} and the accretion luminosity (or the mass-accretion rate) over a large interval of values (Lstar_{star} ∼10−2−1\sim 10^{-2} - 1 L⊙_\odot; Lacc_{acc} ∼10−5−10−1\sim 10^{-5} - 10^{-1} L⊙_\odot; M˙acc\dot M_{acc} ∼10−11−10−7\sim 10^{-11} - 10^{-7} M⊙_\odot/yr). The lines show the presence of a slow wind (Vpeak108V_{peak}10^8 cm−3^{-3}), warm (T∼5000−10000\sim 5000-10000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from ∼10−12\sim 10^{-12} M⊙_\odot and ∼0.01\sim 0.01 AU3^3 for Mstar_{star}∼0.1\sim 0.1 M⊙_\odot, to ∼3×10−10\sim 3 \times 10^{-10} M⊙_\odot and ∼1\sim 1 AU3^3 for Mstar_{star}∼1\sim 1 M⊙_\odot, respectively. These results provide quite stringent constraints to wind models in low mass young stars, that need to be explored further

    X-Shooter spectroscopy of young stellar objects - VI - HI line decrements

    Get PDF
    Hydrogen recombination emission lines commonly observed in accreting young stellar objects represent a powerful tracer for the gas conditions in the circumstellar structures. Here we perform a study of the HI decrements and line profiles, from the Balmer and Paschen lines detected in the X-Shooter spectra of a homogeneous sample of 36 T Tauri stars in Lupus, the accretion and stellar properties of which were already derived in a previous work. We aim to obtain information on the gas physical conditions to derive a consistent picture of the HI emission mechanisms in pre-main sequence low-mass stars. We have empirically classified the sources based on their HI line profiles and decrements. We identified four Balmer decrement types (classified as 1, 2, 3, and 4) and three Paschen decrement types (A, B, and C), characterised by different shapes. We first discussed the connection between the decrement types and the source properties and then compared the observed decrements with predictions from recently published local line excitation models. One third of the objects show lines with narrow symmetric profiles, and present similar Balmer and Paschen decrements (straight decrements, types 2 and A). Lines in these sources are consistent with optically thin emission from gas with hydrogen densities of order 10^9 cm^-3 and 5000<T<15000 K. These objects are associated with low mass accretion rates. Type 4 (L-shaped) Balmer and type B Paschen decrements are found in conjunction with very wide line profiles and are characteristic of strong accretors, with optically thick emission from high-density gas (log n_H > 11 cm^-3). Type 1 (curved) Balmer decrements are observed only in three sub-luminous sources viewed edge-on, so we speculate that these are actually reddened type 2 decrements. About 20% of the objects present type 3 Balmer decrements (bumpy), which cannot be reproduced with current models.Comment: 29 pages, accepted by A&

    Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    Get PDF
    Using Keck/HIRES spectra {\Delta}v ~ 7 km/s, we analyze forbidden lines of [O I] 6300 {\AA}, [O I] 5577 {\AA} and [S II] 6731 {\AA} from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high velocity component (HVC) associated with microjets, we study the properties of the low velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (MHD) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 stars with detected [O I] but only in 2 out of eight with detected [S II] , so our analysis is largely based on the properties of the [O I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The FWHM of both the BC and NC correlates with disk inclination, consistent with Keplerian broadening from radii of 0.05 to 0.5 AU and 0.5 to 5 AU, respectively. The velocity centroids of the BC suggest formation in an MHD disk wind, with the largest blueshifts found in sources with closer to face-on orientations. The velocity centroids of the NC however, show no dependence on disk inclination. The origin of this component is less clear and the evidence for photoevaporation is not conclusive

    Accretion variability of Herbig Ae/Be stars observed by X-Shooter. HD 31648 and HD 163296

    Get PDF
    This work presents X-Shooter/VLT spectra of the prototypical, isolated Herbig Ae stars HD 31648 (MWC 480) and HD 163296 over five epochs separated by timescales ranging from days to months. Each spectrum spans over a wide wavelength range covering from 310 to 2475 nm. We have monitored the continuum excess in the Balmer region of the spectra and the luminosity of twelve ultraviolet, optical and near infrared spectral lines that are commonly used as accretion tracers for T Tauri stars. The observed strengths of the Balmer excesses have been reproduced from a magnetospheric accretion shock model, providing a mean mass accretion rate of 1.11 x 10^-7 and 4.50 x 10^-7 Msun yr^-1 for HD 31648 and HD 163296, respectively. Accretion rate variations are observed, being more pronounced for HD 31648 (up to 0.5 dex). However, from the comparison with previous results it is found that the accretion rate of HD 163296 has increased by more than 1 dex, on a timescale of ~ 15 years. Averaged accretion luminosities derived from the Balmer excess are consistent with the ones inferred from the empirical calibrations with the emission line luminosities, indicating that those can be extrapolated to HAe stars. In spite of that, the accretion rate variations do not generally coincide with those estimated from the line luminosities, suggesting that the empirical calibrations are not useful to accurately quantify accretion rate variability.Comment: 14 pages, 7 Figures, Accepted in Ap

    X-shooter spectroscopy of young stellar objects in Lupus: Lithium, iron, and barium elemental abundances

    Get PDF
    With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: to derive the Li abundance for ~90% of known class II stars in the Lupus I, II, III, IV clouds; to perform chemical tagging of a region where few Fe abundance measurements have been obtained in the past, and no determination of the Ba content has been done up to now. We also investigated possible Ba enhancement, as this element has become increasingly interesting in the last years following the evidence of Ba over-abundance in young clusters, the origin of which is still unknown. Using X-shooter@VLT, we analyzed the spectra of 89 cluster members, both class II and III stars. We measured the strength of the Li line and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also measured the Fe and Ba abundances using the spectral synthesis and the code MOOG. The veiling contribution was taken into account for all three elements. We find a dispersion in the strength of the Li line at low Teff and identify three targets with severe Li depletion. The nuclear age inferred for these highly Li-depleted stars is around 15 Myr, which exceeds the isochronal one. As in other star-forming regions, no metal-rich members are found in Lupus, giving support to a recent hypothesis that the Fe abundance distribution of most of the nearby young regions could be the result of a common and widespread star formation episode involving the Galactic thin disk. We find that Ba is over-abundant by ~0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this Ba abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar parameters, stellar activity, and accretion.Comment: 15 pages, 14 figures, 3 tables; accepted for publication in A&A; abstract shortene

    X-Shooter spectroscopy of young stellar objects: IV -- Accretion in low-mass stars and sub-stellar objects in Lupus

    Full text link
    We present X-Shooter/VLT observations of a sample of 36 accreting low-mass stellar and sub-stellar objects (YSOs) in the Lupus star forming region, spanning a range in mass from ~0.03 to ~1.2Msun, but mostly with 0.1Msun < Mstar < 0.5Msun. Our aim is twofold: firstly, analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (Lacc), and from it the accretion rate (Macc), is derived by modelling the excess emission, from the UV to the near-IR, as the continuum emission of a slab of hydrogen. The flux and luminosity (Ll) of a large number of emission lines of H, He, CaII, etc., observed simultaneously in the range from ~330nm to 2500nm, were computed. The luminosity of all the lines is well correlated with Lacc. We provide empirical relationships between Lacc and the luminosity of 39 emission lines, which have a lower dispersion as compared to previous relationships in the literature. Our measurements extend the Pab and Brg relationships to Lacc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies to measure Lacc and Macc yield significantly different results: Ha line profile modelling may underestimate Macc by 0.6 to 0.8dex with respect to Macc derived from continuum-excess measures. Such differences may explain the likely spurious bi-modal relationships between Macc and other YSOs properties reported in the literature. We derive Macc in the range 2e-12 -- 4e-8 Msun/yr and conclude that Macc is proportional to Mstar^1.8(+/-0.2), with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude in Macc

    X-Shooter spectroscopy of young stellar objects: II. Impact of chromospheric emission on accretion rate estimates

    Full text link
    Context. The lack of knowledge of photospheric parameters and the level of chromospheric activity in young low-mass pre-main sequence stars introduces uncertainties when measuring mass accretion rates in accreting (Class II) Young Stellar Objects. A detailed investigation of the effect of chromospheric emission on the estimates of mass accretion rate in young low-mass stars is still missing. This can be undertaken using samples of young diskless (Class III) K and M-type stars. Aims. Our goal is to measure the chromospheric activity of Class III pre main sequence stars to determine its effect on the estimates of accretion luminosity (Lacc) and mass accretion rate (Macc) in young stellar objects with disks. Methods. Using VLT/X-Shooter spectra we have analyzed a sample of 24 non-accreting young stellar objects of spectral type between K5 and M9.5. We identify the main emission lines normally used as tracers of accretion in Class II objects, and we determine their fluxes in order to estimate the contribution of the chromospheric activity to the line luminosity. Results. We have used the relationships between line luminosity and accretion luminosity derived in the literature for Class II objects to evaluate the impact of chromospheric activity on the accretion rate measurements. We find that the typical chromospheric activity would bias the derived accretion luminosity by Lacc,noise< 10-3Lsun, with a strong dependence with the Teff of the objects. The noise on Macc depends on stellar mass and age, and the typical values of log(Macc,noise) range between -9.2 to -11.6Msun/yr. Conclusions. Values of Lacc< 10-3Lsun obtained in accreting low-mass pre main sequence stars through line luminosity should be treated with caution as the line emission may be dominated by the contribution of chromospheric activity.Comment: accepted for publication in Astronomy & Astrophysic

    X-Shooter spectroscopy of young stellar objects in Lupus: Accretion properties of class II and transitional objects

    Full text link
    We present the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class~II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, Lstar, with an overall slope of ~1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below Lstar~0.1Lsun, where Lacc is always lower than 0.01Lstar. We argue that the Lacc-Lstar slope is not due to observational biases, but is a true property of the Lupus YSOs. The logMacc-logMstar correlation shows a statistically significant evidence of a break, with a steeper relation for Mstar<0.2Msun and a flatter slope for higher masses. The bimodality of the Macc-Mstar relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo evaporation and planet formation during the YSO's lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. We also refined the empirical Lacc vs. Lline relationships.Comment: 43 pages, 22 figure

    The origin of R CrA variability: A complex triple system hosting a disk

    Get PDF
    R~CrA is the brightest member of the Coronet star forming region and it is the closest Herbig AeBe star with a spectrum dominated by emission lines. Its luminosity has been monitored since the end of the 19th century, but the origin of its variability, which shows a stable period of 65.767±0.00765.767\pm 0.007~days, is still unknown. We studied photometric and spectroscopic data for this star to investigate the nature of the variability of R~CrA. We exploited the fact that near infrared luminosity of the Herbig AeBe stars is roughly proportional to the total luminosity of the stars to derive the absorption, and then mass and age of R~CrA. In addition, we model the periodic modulation of the light curve as due to partial attenuation of a central binary by a circumbinary disk. This model reproduces very well the observations. We found that the central object in R~CrA is a very young (1.5±1.51.5\pm 1.5~Myr), highly absorbed (AV=5.47±0.4A_V=5.47\pm 0.4~mag) binary; we obtain masses of MA=3.02±0.43M_A=3.02\pm 0.43~M⊙_\odot and MB=2.32±0.35M_B=2.32\pm 0.35~M⊙_\odot for the two components. We propose that the secular decrease of the R~CrA apparent luminosity is due to a progressive increase of the disk absorption. This might be related to precession of a slightly inclined disk caused by the recently discovered M-dwarf companion. Thus, R~CrA may be a triple system hosting a disk.Comment: Accepted for publication in A&A. 14 pages, 11 figure

    X-Shooter spectroscopy of young stellar objects III. Photospheric and chromospheric properties of Class III objects

    Full text link
    We analyzed X-Shooter/VLT spectra of 24 ClassIII sources from three nearby star-forming regions (sigmaOrionis, LupusIII, and TWHya). We determined the effective temperature, surface gravity, rotational velocity, and radial velocity by comparing the observed spectra with synthetic BT-Settl model spectra. We investigated in detail the emission lines emerging from the stellar chromospheres and combined these data with archival X-ray data to allow for a comparison between chromospheric and coronal emissions. Both X-ray and Halpha luminosity as measured in terms of the bolometric luminosity are independent of the effective temperature for early-M stars but decline toward the end of the spectral M sequence. For the saturated early-M stars the average emission level is almost one dex higher for X-rays than for Halpha: log(L_x/L_bol) = -2.85 +- 0.36 vs. log(L_Halpha/L_bol) = -3.72 +- 0.21. When all chromospheric emission lines (including the Balmer series up to H11, CaII HK, the CaII infrared triplet, and several HeI lines) are summed up the coronal flux still dominates that of the chromosphere, typically by a factor 2-5. Flux-flux relations between activity diagnostics that probe different atmospheric layers (from the lower chromosphere to the corona) separate our sample of active pre-main sequence stars from the bulk of field M dwarfs studied in the literature. Flux ratios between individual optical emission lines show a smooth dependence on the effective temperature. The Balmer decrements can roughly be reproduced by an NLTE radiative transfer model devised for another young star of similar age. Future, more complete chromospheric model grids can be tested against this data set.Comment: accepted for publication in Astronomy & Astrophysic
    • …
    corecore