3,615 research outputs found
Diffuser/ejector system for a very high vacuum environment
Turbo jet engines are used to furnish the necessary high temperature, high volume, medium pressure gas to provide a high vacuum test environment at comparatively low cost for space engines at sea level. Moreover, the invention provides a unique way by use of the variable area ratio ejectors with a pair of meshing cones are used. The outer cone is arranged to translate fore and aft, and the inner cone is interchangeable with other cones having varying angles of taper
The low wind expansion velocity of metal-poor carbon stars in the Halo and the Sagittarius stream
We report the detection, from observations using the James Clerk Maxwell
Telescope, of CO J 3 2 transition lines in six carbon stars, selected
as members of the Galactic Halo and having similar infrared colors. Just one
Halo star had been detected in CO before this work. Infrared observations show
that these stars are red (J-K 3), due to the presence of large dusty
circumstellar envelopes. Radiative transfer models indicates that these stars
are losing mass with rather large dust mass-loss rates in the range 1--3.3
Myr, similar to what can be observed in the
Galactic disc. We show that two of these stars are effectively in the Halo, one
is likely linked to the stream of the Sagittarius Dwarf Spheroidal galaxy (Sgr
dSph), and the other three stars certainly belong to the thick disc. The wind
expansion velocities of the observed stars are low compared to carbon stars in
the thin disc and are lower for the stars in the Halo and the Sgr dSph stream
than in the thick disc. We discuss the possibility that the low expansion
velocities result from the low metallicity of the Halo carbon stars. This
implies that metal-poor carbon stars lose mass at a rate similar to metal-rich
carbon stars, but with lower expansion velocities, as predicted by recent
theoretical models. This result implies that the current estimates of mass-loss
rates from carbon stars in Local Group galaxies will have to be reconsidered.Comment: 10 pages, 7 figures, accepted for publication in MNRA
Transfer of spectral weight across the gap of Sr2IrO4 induced by La doping
We study with Angle Resolved PhotoElectron Spectroscopy (ARPES) the evolution
of the electronic structure of Sr2IrO4, when holes or electrons are introduced,
through Rh or La substitutions. At low dopings, the added carriers occupy the
first available states, at bottom or top of the gap, revealing an anisotropic
gap of 0.7eV in good agreement with STM measurements. At further doping, we
observe a reduction of the gap and a transfer of spectral weight across the
gap, although the quasiparticle weight remains very small. We discuss the
origin of the in-gap spectral weight as a local distribution of gap values
Short small-polaron lifetime in the mixed-valence perovskite CsAuI from high-pressure pump-probe experiments
We study the ultrafast phonon response of mixed-valence perovskite
CsAuI using pump-probe spectroscopy under high-pressure in a
diamond anvil cell. We observed a remarkable softening and broadening of the Au
- I stretching phonon mode with both applied pressure and photoexcitation.
Using a double-pump scheme we measured a lifetime of the charge transfer
excitation into single valence Au of less than 4 ps, which is an
indication of the local character of the Au excitation. Furthermore, the
strong similarity between the pressure and fluence dependence of the phonon
softening shows that the inter-valence charge transfer plays an important role
in the structural transition.Comment: 4 pages, 4 figure
Intraoperative electrocochleographic characteristics of auditory neuropathy spectrum disorder in cochlear implant subjects
Auditory neuropathy spectrum disorder (ANSD) is characterized by an apparent discrepancy between measures of cochlear and neural function based on auditory brainstem response (ABR) testing. Clinical indicators of ANSD are a present cochlear microphonic (CM) with small or absent wave V. Many identified ANSD patients have speech impairment severe enough that cochlear implantation (CI) is indicated. To better understand the cochleae identified with ANSD that lead to a CI, we performed intraoperative round window electrocochleography (ECochG) to tone bursts in children (n = 167) and adults (n = 163). Magnitudes of the responses to tones of different frequencies were summed to measure the “total response” (ECochG-TR), a metric often dominated by hair cell activity, and auditory nerve activity was estimated visually from the compound action potential (CAP) and auditory nerve neurophonic (ANN) as a ranked “Nerve Score”. Subjects identified as ANSD (45 ears in children, 3 in adults) had higher values of ECochG-TR than adult and pediatric subjects also receiving CIs not identified as ANSD. However, nerve scores of the ANSD group were similar to the other cohorts, although dominated by the ANN to low frequencies more than in the non-ANSD groups. To high frequencies, the common morphology of ANSD cases was a large CM and summating potential, and small or absent CAP. Common morphologies in other groups were either only a CM, or a combination of CM and CAP. These results indicate that responses to high frequencies, derived primarily from hair cells, are the main source of the CM used to evaluate ANSD in the clinical setting. However, the clinical tests do not capture the wide range of neural activity seen to low frequency sounds
Continuous evolution of the in-plane magnetic anisotropies with thickness in epitaxial Fe films
Copyright © 1996 American Institute of Physics.We have studied the evolution of the magnetic in‐plane anisotropy in epitaxial Fe/GaAs films of both (001) and (110) orientation as a function of the Fe layer thickness using the longitudinal magneto‐optic Kerr effect and Brillouin light scattering. Magnetization curves which are recorded in situ during film growth reveal a continuous change of the net anisotropy axes with increasing film thickness. This behavior can be understood to arise from the combination of a uniaxial and a cubic in‐plane magnetic anisotropy which are both thickness dependent. Structural analysis of the substrate and Fe film surfaces provides insight into the contribution of atomic steps at the interfaces to the magnetic anisotropy. Changing the degree of crystalline order at the Fe–GaAs interface allows us to conclude that the magnetic anisotropies are determined by atomic scale order
Scale-invariant magnetoresistance in a cuprate superconductor
The anomalous metallic state in high-temperature superconducting cuprates is
masked by the onset of superconductivity near a quantum critical point. Use of
high magnetic fields to suppress superconductivity has enabled a detailed study
of the ground state in these systems. Yet, the direct effect of strong magnetic
fields on the metallic behavior at low temperatures is poorly understood,
especially near critical doping, . Here we report a high-field
magnetoresistance study of thin films of \LSCO cuprates in close vicinity to
critical doping, . We find that the metallic state
exposed by suppressing superconductivity is characterized by a
magnetoresistance that is linear in magnetic field up to the highest measured
fields of T. The slope of the linear-in-field resistivity is
temperature-independent at very high fields. It mirrors the magnitude and
doping evolution of the linear-in-temperature resistivity that has been
ascribed to Planckian dissipation near a quantum critical point. This
establishes true scale-invariant conductivity as the signature of the strange
metal state in the high-temperature superconducting cuprates.Comment: 10 pages, 3 figure
- …