25 research outputs found
ERCC1-deficient cells and mice are hypersensitive to lipid peroxidation
Lipid peroxidation (LPO) products are relatively stable and abundant metabolites, which accumulate in tissues of mammals with aging, being able to modify all cellular nucleophiles, creating protein and DNA adducts including crosslinks. Here, we used cells and mice deficient in the ERCC1-XPF endonuclease required for nucleotide excision repair and the repair of DNA interstrand crosslinks to ask if specifically LPO-induced DNA damage contributes to loss of cell and tissue homeostasis. Ercc1-/- mouse embryonic fibroblasts were more sensitive than wild-type (WT) cells to the LPO products: 4-hydroxy-2-nonenal (HNE), crotonaldehyde and malondialdehyde. ERCC1-XPF hypomorphic mice were hypersensitive to CCl4 and a diet rich in polyunsaturated fatty acids, two potent inducers of endogenous LPO. To gain insight into the mechanism of how LPO influences DNA repair-deficient cells, we measured the impact of the major endogenous LPO product, HNE, on WT and Ercc1-/- cells. HNE inhibited proliferation, stimulated ROS and LPO formation, induced DNA base damage, strand breaks, error-prone translesion DNA synthesis and cellular senescence much more potently in Ercc1-/- cells than in DNA repair-competent control cells. HNE also deregulated base excision repair and energy production pathways. Our observations that ERCC1-deficient cells and mice are hypersensitive to LPO implicates LPO-induced DNA damage in contributing to cellular demise and tissue degeneration, notably even when the source of LPO is dietary polyunsaturated fats
Spontaneous DNA damage to the nuclear genome promotes senescence, T redox imbalance and aging
Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline
Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging
Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline
Identification and Characterization of Novel Rat Polyomavirus 2 in a Colony of X-SCID Rats by P-PIT assay
ABSTRACT Polyomaviruses (PyVs) are known to infect a wide range of vertebrates and invertebrates and are associated with a broad spectrum of diseases, including cancers, particularly in immune-suppressed hosts. A novel polyomavirus, designated rat polyomavirus 2 (RatPyV2), was identified from a breeding colony of rats having X-linked severe combined immunodeficiency. Using a human panpolyomavirus immunohistochemistry test (P-PIT), RatPyV2 was initially detected in the parotid salivary gland of a colony member. Rolling circle amplification using DNA from harderian and parotid glands identified a novel 5.1-kb polyomavirus genome closely related to human Washington University (WU) and Karolinska Institute (KI) and vole polyomaviruses but notably divergent from Rattus norvegicus PyV1 (RnorPyV1; also designated RatPyV1). Further screening showed RatPyV2 inclusion body infection in the lung epithelium and variably in other respiratory, reproductive, and glandular tissues of 12/12 (100%) rats. IMPORTANCE Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies
Evaluation of the pharmacokinetics, dosimetry, and therapeutic efficacy for the α-particle-emitting transarterial radioembolization (αTARE) agent [225Ac]Ac-DOTA-TDA-Lipiodol® against hepatic tumors
Abstract Background The liver is a common site for metastatic disease for a variety of cancers, including colorectal cancer. Both primary and secondary liver tumors are supplied through the hepatic artery while the healthy liver is supplied by the portal vein. Transarterial radioembolization (TARE) using yttrium-90 glass or resin microspheres have shown promising results with reduced side-effects but have similar survival benefits as chemoembolization in patients with hepatocellular carcinoma (HCC). This highlights the need for new novel agents against HCC. Targeted alpha therapy (TAT) is highly potent treatment due to the short range (sparing adjacent normal tissue), and densely ionizing track (high linear energy transfer) of the emitted α-particles. The incorporation of α-particle-emitting radioisotopes into treatment of HCC has been extremely limited, with our recent publication pioneering the field of α-particle-emitting TARE (αTARE). This study focuses on an in-depth evaluation of the αTARE-agent [225Ac]Ac-DOTA-TDA-Lipiodol® as an effective therapeutic agent against HCC regarding pharmacokinetics, dosimetry, stability, and therapeutic efficacy. Results [225Ac]Ac-DOTA-TDA was shown to be a highly stable with bench-top stability at ≥ 95% radiochemical purity (RCP) over a 3-day period and serum stability was ≥ 90% RCP over 5-days. The pharmacokinetic data showed retention in the tumor of [225Ac]Ac-DOTA-TDA-Lipiodol® and clearance through the normal organs. In addition, the tumor and liver acted as suppliers of the free daughters, which accumulated in the kidneys supplied via the blood. The dose limiting organ was the liver, and the estimated maximum tolerable activity based on the rodents whole-body weight: 728–3641 Bq/g (male rat), 396–1982 Bq/g (male mouse), and 453–2263 Bq/g (female mouse), depending on an RBE-value (range 1–5). Furthermore, [225Ac]Ac-DOTA-TDA-Lipiodol® showed significant improvement in survival for both the male and female mice (median survival 47-days) compared with controls (26-days untreated, and 33–35-days Lipiodol® alone). Conclusions This study shows that [225Ac]Ac-DOTA-TDA-Lipiodol® is a stable compound allowing for centralized manufacturing and distribution world-wide. Furthermore, the result of this study support the continue development of evaluation of the αTARE-agent [225Ac]Ac-DOTA-TDA-Lipiodol® as a potential treatment option for treating hepatic tumors
Collagenous Colitis-like Condition in Immunosuppressed Infant Baboons
Collagenous colitis is a chronic inflammatory bowel disease of unknown etiology. It is fairly common in adult humans, but rare in infants, and has been associated with autoimmune disorders. METHODS We report four infant baboons (age 7-12 months) that had received a transplant at 3 months of age and subsequent immunosuppressive therapy for periods of 4-10 months. All presented identical symptoms within a period of 4 weeks, including weight loss associated with chronic watery diarrhea that was unresponsive to standard antimicrobial treatment. RESULTS Clinical chemistry evaluations were within normal ranges, viral causes were ruled out, and fecal and blood cultures were repeatedly negative. At necropsy, two infant baboons were found to have a form of collagenous colitis. In the remaining two baboons that had identical clinical features, immunosuppressive therapy was discontinued and treatment with budesonide was initiated. Both baboons recovered and remained well on no medication until the end of follow-up (24 months)
EAF2 and p53 Co-Regulate STAT3 Activation in Prostate Cancer
The tumor suppressor genes EAF2 and p53 are frequently dysregulated in prostate cancers. Recently, we reported that concurrent p53 nuclear staining and EAF2 downregulation were associated with high Gleason score. Combined loss of EAF2 and p53 in a murine model induced prostate tumors, and concurrent knockdown of EAF2 and p53 in prostate cancer cells enhanced proliferation and migration, further suggesting that EAF2 and p53 could functionally interact in the suppression of prostate tumorigenesis. Here, RNA-seq analyses identified differentially regulated genes in response to concurrent knockdown of p53 and EAF2. Several of these genes were associated with the STAT3 signaling pathway, and this was verified by significantly increased p-STAT3 immunostaining in the Eaf2−/−p53−/− mouse prostate. STAT3 knockdown abrogated the stimulation of C4-2 cell proliferation by concurrent knockdown of EAF2 and p53. Furthermore, immunostaining of p-STAT3 was increased in human prostate cancer specimens with EAF2 downregulation and/or p53 nuclear staining. Our findings suggest that simultaneous inactivation of EAF2 and p53 can act to activate STAT3 and drive prostate tumorigenesis
Mitotic CDK1 and 4E-BP1 I: Loss of 4E-BP1 serine 82 phosphorylation promotes proliferative polycystic disease and lymphoma in aged or sublethally irradiated mice.
4E-BP1 is a tumor suppressor regulating cap-dependent translation that is in turn controlled by mechanistic target of rapamycin (mTOR) or cyclin-dependent kinase 1 (CDK1) phosphorylation. 4E-BP1 serine 82 (S82) is phosphorylated by CDK1, but not mTOR, and the consequences of this mitosis-specific phosphorylation are unknown. Knock-in mice were generated with a single 4E-BP1 S82 alanine (S82A) substitution leaving other phosphorylation sites intact. S82A mice were fertile and exhibited no gross developmental or behavioral abnormalities, but the homozygotes developed diffuse and severe polycystic liver and kidney disease with aging, and lymphoid malignancies after irradiation. Sublethal irradiation caused immature T-cell lymphoma only in S82A mice while S82A homozygous mice have normal T-cell hematopoiesis before irradiation. Whole genome sequencing identified PTEN mutations in S82A lymphoma and impaired PTEN expression was verified in S82A lymphomas derived cell lines. Our study suggests that the absence of 4E-BP1S82 phosphorylation, a subtle change in 4E-BP1 phosphorylation, might predispose to polycystic proliferative disease and lymphoma under certain stressful circumstances, such as aging and irradiation