150 research outputs found

    A new study of 25^{25}Mg(α\alpha,n)28^{28}Si angular distributions at EαE_\alpha = 3 - 5 MeV

    Full text link
    The observation of 26^{26}Al gives us the proof of active nucleosynthesis in the Milky Way. However the identification of the main producers of 26^{26}Al is still a matter of debate. Many sites have been proposed, but our poor knowledge of the nuclear processes involved introduces high uncertainties. In particular, the limited accuracy on the 25^{25}Mg(α\alpha,n)28^{28}Si reaction cross section has been identified as the main source of nuclear uncertainty in the production of 26^{26}Al in C/Ne explosive burning in massive stars, which has been suggested to be the main source of 26^{26}Al in the Galaxy. We studied this reaction through neutron spectroscopy at the CN Van de Graaff accelerator of the Legnaro National Laboratories. Thanks to this technique we are able to discriminate the (α\alpha,n) events from possible contamination arising from parasitic reactions. In particular, we measured the neutron angular distributions at 5 different beam energies (between 3 and 5 MeV) in the \ang{17.5}-\ang{106} laboratory system angular range. The presented results disagree with the assumptions introduced in the analysis of a previous experiment.Comment: 9 pages, 9 figures - accepted by EPJ

    Cultural modulation of face and gaze scanning in young children

    Get PDF
    Previous research has demonstrated that the way human adults look at others’ faces is modulated by their cultural background, but very little is known about how such a culture-specific pattern of face gaze develops. The current study investigated the role of cultural background on the development of face scanning in young children between the ages of 1 and 7 years, and its modulation by the eye gaze direction of the face. British and Japanese participants’ eye movements were recorded while they observed faces moving their eyes towards or away from the participants. British children fixated more on the mouth whereas Japanese children fixated more on the eyes, replicating the results with adult participants. No cultural differences were observed in the differential responses to direct and averted gaze. The results suggest that different patterns of face scanning exist between different cultures from the first years of life, but differential scanning of direct and averted gaze associated with different cultural norms develop later in life

    First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae

    Full text link
    Classical novae are important contributors to the abundances of key isotopes, such as the radioactive ^{18}F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The ^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range Ecm = 200 - 370 keV appropriate to hydrogen burning in classical novae. In addition, the E=183 keV resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let

    Preparation and characterisation of isotopically enriched Ta2_2O5_5 targets for nuclear astrophysics studies

    Full text link
    The direct measurement of reaction cross sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2_2O5_5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17^{17}O and up to 96% in 18^{18}O). Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.Comment: accepted to EPJ

    Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones

    Full text link
    The NO cycle takes place in the deepest layer of a H-burning core or shell, when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion observed in some globular cluster giant stars, always associated with a Na enhancement, may be due to either a deep mixing during the RGB (red giant branch) phase of the star or to the pollution of the primordial gas by an early population of massive AGB (asymptotic giant branch) stars, whose chemical composition was modified by the hot bottom burning. In both cases, the NO cycle is responsible for the O depletion. The activation of this cycle depends on the rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction rate at temperatures as low as experienced in H-burning zones in stellar interiors is mandatory to understand the observed O abundances. We present a new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering for the first time the center of mass energy range 70-370 keV, which corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106 K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive H-burning taking place in the external layer of a nova and the one of the hot bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the present data, we are also able to confirm the result of the previous R-matrix extrapolation. In particular, in the temperature range of astrophysical interest, the new rate is about a factor of 2 smaller than reported in the widely adopted compilation of reaction rates (NACRE or CF88) and the uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure

    Measurement of the 25Mg(α,n)28Si reaction cross section at LNL

    Get PDF
    The detection of the 1809 keV emission line associated with the decay of 26Al (T1=2 ∌ 7:2 · 105 years) in the interstellar medium provides a direct evidence that nucleosynthesis is ongoing in our galaxy. 26Al is thought to be mainly produced in massive stars, but in order to have a quantitative understanding of the 26Al distribution, the cross section of all the nuclear reactions involved in its production should be accurately known. 25Mg(α,n)28Si is one of the reactions with the strongest impact on the synthesis of 26Al during explosive neon and carbon burning. Its cross section has been measured by many authors, but below 3 MeV, the literature data are still characterized by large uncertainties due to beam-induced background. The reaction rate reported by NACRE is based on unpublished data and, at higher energies, on Hauser-Feshbach calculations, disregarding other experimental cross section datasets. In order to improve the experimental knowledge of the 25Mg(α,n)28Si cross section, a new direct measurement has been performed at Legnaro National Laboratories. A pulsed alpha beam with energies E = 3-5 MeV was provided by the CN accelerator. The neutrons were detected with 10 liquid scintillators BC501 from the RIPEN array, positioned at different angles. g-n discrimination is achieved applying the Pulse Shape Analysis technique. Furthermore, measuring the neutron energy with the Time Of Flight method it is possible to disentangle the contribution to the cross section of different 28Si excited states, and to identify the background neutrons produced by (α,n) reactions with light contaminants in the setup. The angular distributions measured with this experimental system will be presented
    • 

    corecore