1,582 research outputs found
Signatures of Discontinuity in the Exchange-Correlation Energy Functional Derived from the Subband Electronic Structure of Semiconductor Quantum Wells
The discontinuous character of the exact exchange-correlation energy
functional of Density Functional Theory is shown to arise naturally in the
subband spectra of semiconductor quantum wells. Using an \emph{ab-initio}
functional, including exchange exactly and correlation in an exact partial way,
a discontinuity appears in the potential, each time a subband becomes
slightly occupied. Exchange and correlation give opposite contributions to the
discontinuity, with correlation overcoming exchange. The jump in the
intersubband energy is in excellent agreement with experimental data.Comment: 5 pages, 3 figure
Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study
F NMR measurements in SmFeAsOF, for ,
are presented. The nuclear spin-lattice relaxation rate increases upon
cooling with a trend analogous to the one already observed in
CeCuAu, a quasi two-dimensional heavy-fermion intermetallic
compound with an antiferromagnetic ground-state. In particular, the behaviour
of the relaxation rate either in SmFeAsOF or in
CeCuAu can be described in the framework of the self-consistent
renormalization theory for weakly itinerant electron systems. Remarkably, no
effect of the superconducting transition on F is detected, a
phenomenon which can hardly be explained within a single band model.Comment: 4 figure
Exploring the EU plastic value chain: A material flow analysis
The accounting of plastic flows across the economy is pivotal to assess circularity of production and consumption and to define transitions scenarios at systems level. This study established a top-down mass flow analysis model for the EU27 (2019) plastic value chain, focusing on 9 sectors and 10 polymers. Estimates indicate that 4.46Mt of plastic recyclates are produced and consumed in the EU27 territory. On average, the EU27 recycling rate was equal to 19%. Total plastic losses amounted to 4% of the total plastic production, mostly occurring during the use phase. Future 2025 scenarios were prepared considering expected trends in the plastic value chain and compared with industry targets. In the cases of combined scenarios, the total recyclates consumed by plastic converters in 2025 ranged between 9.11Mt and 11.13Mt. Considering the key commitments for actions at the EU level, an evidence-based transformation of the plastic value chain is essential
Kohn-Sham Exchange Potential for a Metallic Surface
The behavior of the surface barrier that forms at the metal-vacuum interface
is important for several fields of surface science. Within the Density
Functional Theory framework, this surface barrier has two non-trivial
components: exchange and correlation. Exact results are provided for the
exchange component, for a jellium metal-vacuum interface, in a slab geometry.
The Kohn-Sham exact-exchange potential has been generated by using
the Optimized Effective Potential method, through an accurate numerical
solution, imposing the correct boundary condition. It has been proved
analytically, and confirmed numerically, that ; this conclusion is not affected by the inclusion of correlation
effects. Also, the exact-exchange potential develops a shoulder-like structure
close to the interface, on the vacuum side. The issue of the classical image
potential is discussed.Comment: Phys. Rev. Lett. (to appear
Novel properties of the Kohn-Sham exchange potential for open systems: application to the two-dimensional electron gas
The properties of the Kohn-Sham (KS) exchange potential for open systems in
thermodynamical equilibrium, where the number of particles is non-conserved,
are analyzed with the Optimized Effective Potential (OEP) method of Density
Functional Theory (DFT) at zero temperature. The quasi two-dimensional electron
gas (2DEG) is used as an illustrative example. The main findings are that the
KS exchange potential builds a significant barrier-like structure under slight
population of the second subband, and that both the asymptotic value of the KS
exchange potential and the inter-subband energy jump discontinuously at the
one-subband (1S) -> two-subband (2S) transition. The results obtained in this
system offer new insights on open problems of semiconductors, such as the
band-gap underestimation and the band-gap renormalization by photo-excited
carriers.Comment: 7 pages, 3 figures, uses epl.cls(included), accepted for publication
in Europhysics Letter
Superconducting phase fluctuations in SmFeAsOF from diamagnetism at low magnetic field above
Superconducting fluctuations (SF) in SmFeAsOF (characterized
by superconducting transition temperature K) are
investigated by means of isothermal high-resolution dc magnetization
measurements. The diamagnetic response to magnetic fields up to 1 T above
is similar to what previously reported for underdoped cuprate
superconductors and it can be justified in terms of metastable superconducting
islands at non-zero order parameter lacking of long-range coherence because of
strong phase fluctuations. In the high-field regime ( T) scaling
arguments predicted on the basis of the Ginzburg-Landau theory of conventional
SF are found to be applicable, at variance with what observed in the low-field
regime. This fact enlightens that two different phenomena are simultaneously
present in the fluctuating diamagnetism, namely the phase SF of novel character
and the conventional SF. High magnetic fields (1.5 T )
are found to suppress the former while leaving unaltered the latter one.Comment: 7 pages, 5 figure
CYP2E1 autoantibodies in liver diseases
Autoimmune reactions involving cytochrome P4502E1 (CYP2E1) are a feature of idiosyncratic liver injury induced by halogenated hydrocarbons and isoniazid, but are also detectable in about one third of the patients with advanced alcoholic liver disease (ALD) and chronic hepatitis C (CHC). In these latter the presence of anti-CYP2E1 auto-antibodies is an independent predictor of extensive necro-inflammation and fibrosis and worsens the recurrence of hepatitis following liver transplantation, indicating that CYP2E1-directed autoimmunity can contribute to hepatic injury. The molecular characterization of the antigens recognized by anti-CYP2E1 auto-antibodies in ALD and CHC has shown that the targeted conformational epitopes are located in close proximity on the molecular surface. Furthermore, these epitopes can be recognized on CYP2E1 expressed on hepatocyte plasma membranes where they can trigger antibody-mediated cytotoxicity. This does not exclude that T cell-mediated responses against CYP2E1 might also be involved in causing hepatocyte damage. CYP2E1 structural modifications by reactive metabolites and molecular mimicry represent important factors in the breaking of self-tolerance against CYP2E1 in, respectively, ALD and CHC. However, genetic or acquired interferences with the mechanisms controlling the homeostasis of the immune system are also likely to contribute. More studies are needed to better characterize the impact of anti-CYP2E1 autoimmunity in liver diseases particularly in relation to the fact that common metabolic alterations such as obesity and diabetes stimulates hepatic CYP2E1 expression
- …