431 research outputs found

    Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype

    Full text link
    Although for large area detectors it is crucial to find an alternative to detect thermal neutrons because of the 3He shortage, this is not the case for small area detectors. Neutron scattering science is still growing its instruments' power and the neutron flux a detector must tolerate is increasing. For small area detectors the main effort is to expand the detectors' performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade detector which wants to increase the spatial resolution of 3He-based detectors for high flux applications. We developed a high spatial resolution prototype suitable for neutron reflectometry instruments. It exploits solid 10B-films employed in a proportional gas chamber. Two prototypes have been constructed at ILL and the results obtained on our monochromatic test beam line are presented here

    Optical Conductivity and Hall Coefficient in High-Tc Superconductors: Significant Role of Current Vertex Corrections

    Full text link
    We study AC conductivities in high-Tc cuprates, which offer us significant information to reveal the true electronic ground states. Based on the fluctuation-exchange (FLEX) approximation, current vertex corrections (CVC's) are correctly taken into account to satisfy the conservation laws. We find the significant role of the CVC's on the optical Hall conductivity in the presence of strong antiferromagnetic (AF) fluctuations. This fact leads to the failure of the relaxation time approximation (RTA). As a result, experimental highly unusual behaviors, (i) prominent frequency and temperature dependences of the optical Hall coefficient, and (ii) simple Drude form of the optical Hall andge for wide range of frequencies, are satisfactorily reproduced. In conclusion, both DC and AC transport phenomena in (slightly under-doped) high-Tc cuprates can be explained comprehensively in terms of nearly AF Fermi liquid, if one take the CVC's into account.Comment: 5 page

    Functional traits of indigenous and exotic ground-dwelling arthropods show contrasting responses to land-use change in an oceanic island, Terceira, Azores

    Get PDF
    Aim: Land-use change typically goes hand in hand with the introduction of exotic-species, which mingle with indigenous species to form novel assemblages. Here, we compare the functional structure of indigenous and exotic elements of ground-dwelling arthropod assemblages across four land-uses of varying management intensity. Location: Terceira Island (Azores, North Atlantic). Methods: We used pitfall traps to sample arthropods in 36 sites across the four land-uses and collated traits related to dispersal ability, body size and resource use. For both indigenous and exotic species, we examined the impact of land-uses on trait diversity and tested for the existence of non-random assembly processes using null models. We analysed differences in trait composition among land-uses for both indigenous and exotic species with multivariate analyses. We used point-biserial correlations to identity traits significantly correlated with specific land-uses for each element. Results: We recorded 86 indigenous and 116 exotic arthropod species. Under high-intensity land-use, both indigenous and exotic elements showed significant trait clustering. Trait composition strongly shifted across land-uses, with indigenous and exotic species being functionally dissimilar in all land-uses. Large-bodied herbivores dominated exotic elements in low-intensity land-uses, while small-bodied spiders dominated exotic elements in high-intensity land-uses. In contrast, with increasing land-use intensity, indigenous species changed from functionally diverse to being dominated by piercing and cutting herbivores. Main conclusions: Our study revealed two main findings: first, in high-intensity - land-uses, trait clustering characterized both indigenous and exotic elements; second, exotic species differed in their functional profile from indigenous species in all land-use types. Overall, our results provide new insights into the functional role of exotic species in a land-use context, suggesting that, in agricultural landscape, exotic species may contribute positively to the maintenance of some ecosystem functions.Peer reviewe

    A noiseless kilohertz frame rate imaging detector based on microchannel plates read out with the Medipix2 CMOS pixel chip

    Get PDF
    A new hybrid optical imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors (WFS) for ground-based telescopes. The detector consists of a photocathode and proximity focused microchannel plates (MCPs) read out by the Medipix2 CMOS pixel ASIC. Each pixel of the Medipix2 device measures 55x55 um2 and comprises pre-amplifier, a window discriminator and a 14-bit counter. The 256x256 Medipix2 array can be read out noiselessly in 287 us. The readout can be electronically shuttered down to a temporal window of a few us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. Measurements with ultraviolet light yield a spatial resolution of the detector at the Nyquist limit. Sub-pixel resolution can be achieved using centroiding algorithms. For the AO application, very high continuous frame rates of the order of 1 kHz are required for a matrix of 512x512 pixels. The design concepts of a parallel readout board are presented that will allow this fast data throughput. The development status of the optical WFS tube is also explained

    Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect

    Full text link
    With unusually slow and high-resolution sweeps of magnetic field, strong, ultra-narrow (width down to 100μT100 {\rm \mu T}) resistance peaks are observed in the regime of breakdown of the quantum Hall effect. The peaks are dependent on the directions and even the history of magnetic field sweeps, indicating the involvement of a very slow physical process. Such a process and the sharp peaks are, however, not predicted by existing theories. We also find a clear connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    SPHERE: the exoplanet imager for the Very Large Telescope

    Get PDF
    Observations of circumstellar environments to look for the direct signal of exoplanets and the scattered light from disks has significant instrumental implications. In the past 15 years, major developments in adaptive optics, coronagraphy, optical manufacturing, wavefront sensing and data processing, together with a consistent global system analysis have enabled a new generation of high-contrast imagers and spectrographs on large ground-based telescopes with much better performance. One of the most productive is the Spectro-Polarimetic High contrast imager for Exoplanets REsearch (SPHERE) designed and built for the ESO Very Large Telescope (VLT) in Chile. SPHERE includes an extreme adaptive optics system, a highly stable common path interface, several types of coronagraphs and three science instruments. Two of them, the Integral Field Spectrograph (IFS) and the Infra-Red Dual-band Imager and Spectrograph (IRDIS), are designed to efficiently cover the near-infrared (NIR) range in a single observation for efficient young planet search. The third one, ZIMPOL, is designed for visible (VIR) polarimetric observation to look for the reflected light of exoplanets and the light scattered by debris disks. This suite of three science instruments enables to study circumstellar environments at unprecedented angular resolution both in the visible and the near-infrared. In this work, we present the complete instrument and its on-sky performance after 4 years of operations at the VLT.Comment: Final version accepted for publication in A&
    corecore