70 research outputs found

    Families of nested completely regular codes and distance-regular graphs

    Get PDF
    In this paper infinite families of linear binary nested completely regular codes are constructed. They have covering radius ρ\rho equal to 33 or 44, and are 1/2i1/2^i-th parts, for i{1,,u}i\in\{1,\ldots,u\} of binary (respectively, extended binary) Hamming codes of length n=2m1n=2^m-1 (respectively, 2m2^m), where m=2um=2u. In the usual way, i.e., as coset graphs, infinite families of embedded distance-regular coset graphs of diameter DD equal to 33 or 44 are constructed. In some cases, the constructed codes are also completely transitive codes and the corresponding coset graphs are distance-transitive

    On the number of nonequivalent propelinear extended perfect codes

    Full text link
    The paper proves that there exist an exponential number of nonequivalent propelinear extended perfect binary codes of length growing to infinity. Specifically, it is proved that all transitive extended perfect binary codes found by Potapov are propelinear. All such codes have small rank, which is one more than the rank of the extended Hamming code of the same length. We investigate the properties of these codes and show that any of them has a normalized propelinear representation
    corecore