The paper proves that there exist an exponential number of nonequivalent
propelinear extended perfect binary codes of length growing to infinity.
Specifically, it is proved that all transitive extended perfect binary codes
found by Potapov are propelinear. All such codes have small rank, which is one
more than the rank of the extended Hamming code of the same length. We
investigate the properties of these codes and show that any of them has a
normalized propelinear representation