170 research outputs found

    Acute Graft-vs.-Host Disease-Associated Endothelial Activation in vitro Is Prevented by Defibrotide

    Get PDF
    Altres ajuts: This study was supported in part by Jazz Pharmaceuticals Plc (IST-16-10355), German Jose Carreras Leukaemia Foundation (11R/2016 and 03R/2019).Angiogenesis and endothelial activation and dysfunction have been associated with acute graft-vs.-host disease (aGVHD), pointing to the endothelium as a potential target for pharmacological intervention. Defibrotide (DF) is a drug with an endothelium-protective effect that has been approved for the treatment of veno-occlusive disease/sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Clinical data suggest that DF also reduces the incidence of aGVHD; however, the mechanisms of DF-mediated aGVHD regulation have not been examined. To investigate possible DF-mediated prophylactic and therapeutic mechanisms in aGVHD, we performed in vitro studies using endothelial cell (EC) lines. We found that DF significantly and dose-dependently suppressed EC proliferation and notably reduced their ability to form vascular tubes in Matrigel. To explore whether DF administered prophylactically or therapeutically has a significant effect on aGVHD endothelial dysfunction, ECs were exposed to media containing sera from patients with aGVHD (n = 22) in the absence or presence of DF and from patients that did not develop aGVHD (n = 13). ECs upregulated adhesion molecules (vascular cell adhesion molecule 1, intercellular adhesion molecule 1), the adherence junction protein VE-cadherin, von Willebrand factor (VWF), and Akt phosphorylation in response to aGVHD sera. These responses were suppressed upon treatment with DF. In summary, DF inhibits vascular angiogenesis and endothelial activation induced by sera from aGVHD patients. Our results support the view that DF has notable positive effects on endothelial biology during aGVHD

    TRAIL receptor I (DR4) polymorphisms C626G and A683C are associated with an increased risk for hepatocellular carcinoma (HCC) in HCV-infected patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumour surveillance via induction of TRAIL-mediated apoptosis is a key mechanism, how the immune system prevents malignancy. To determine if gene variants in the TRAIL receptor I (<it>DR4</it>) gene affect the risk of hepatitis C virus (HCV)-induced liver cancer (HCC), we analysed <it>DR4 </it>mutations C626G (rs20575) and A683C (rs20576) in HCV-infected patients with and without HCC.</p> <p>Methods</p> <p>Frequencies of <it>DR4 </it>gene polymorphisms were determined by LightSNiP assays in 159 and 234 HCV-infected patients with HCC and without HCC, respectively. 359 healthy controls served as reference population.</p> <p>Results</p> <p>Distribution of C626G and A683C genotypes were not significantly different between healthy controls and HCV-positive patients without HCC. <it>DR4 </it>variants 626C and 683A occurred at increased frequencies in patients with HCC. The risk of HCC was linked to carriage of the 626C allele and the homozygous 683AA genotype, and the simultaneous presence of the two risk variants was confirmed as independent HCC risk factor by Cox regression analysis (Odds ratio 1.975, 95% CI 1.205-3.236; p = 0.007). Furthermore HCV viral loads were significantly increased in patients who simultaneously carried both genetic risk factors (2.69 ± 0.36 × 10<sup>6</sup> IU/ml vs. 1.81 ± 0.23 × 10<sup>6</sup> IU/ml, p = 0.049).</p> <p>Conclusions</p> <p>The increased prevalence of patients with a 626C allele and the homozygous 683AA genotype in HCV-infected patients with HCC suggests that these genetic variants are a risk factor for HCC in chronic hepatitis C.</p

    Endothelial damage and dysfunction in acute graft-versus-host disease

    Get PDF
    Clinical studies suggested that endothelial dysfunction and damage could be involved in the development and severity of acute graft-versus-host disease (aGVHD). Accordingly, we found increased percentage of apoptotic Casp3+ blood vessels in duodenal and colonic mucosa biopsies of patients with severe aGVHD. In murine experimental aGVHD, we detected severe microstructural endothelial damage and reduced endothelial pericyte coverage accompanied by reduced expression of endothelial tight junction proteins leading to increased endothelial leakage in aGVHD target organs. During intestinal aGVHD, colonic vasculature structurally changed, reflected by increased vessel branching and vessel diameter. Because recent data demonstrated an association of endothelium-related factors and steroid refractory aGVHD (SR-aGVHD), we analyzed human biopsies and murine tissues from SR-aGVHD. We found extensive tissue damage but low levels of alloreactive T cell infiltration in target organs, providing the rationale for T-cell independent SR-aGVHD treatment strategies. Consequently, we tested the endothelium-protective PDE5 inhibitor sildenafil, which reduced apoptosis and improved metabolic activity of endothelial cells in vitro. Accordingly, sildenafil treatment improved survival and reduced target organ damage during experimental SR-aGVHD. Our results demonstrate extensive damage, structural changes, and dysfunction of the vasculature during aGVHD. Therapeutic intervention by endothelium-protecting agents is an attractive approach for SR-aGVHD complementing current anti-inflammatory treatment options

    Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin

    Get PDF
    Disease-related PrPSc [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrPC(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrPSc using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrPSc in its full-length form. In the present study, we show that thermolysin can degrade PrPC while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt–Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only ∼15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases

    Isolation of Proteinase K-Sensitive Prions Using Pronase E and Phosphotungstic Acid

    Get PDF
    Disease-related prion protein, PrPSc, is classically distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrPSc using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrPC, while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrPC

    Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastomas (GBM), the most frequent malignant brain tumors in adults, are characterized by an aggressive local growth pattern and highly invasive tumor cells. This invasion is facilitated by expression of matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases. They mediate the degradation of protein components of the extracellular matrix. Twenty-three family members are known. Elevated levels of several of them have been reported in GBM. GBM cell-lines are used for <it>in vitro </it>studies of cell migration and invasion. Therefore, it is essential to know their MMP expression patterns. Only limited data for some of the cell-lines are published, yet. To fill the gaps in our knowledge would help to choose suitable model systems for analysis of regulation and function of MMPs during GBM tumorigenesis, cell migration and invasion.</p> <p>Findings</p> <p>We analysed MMP-1, -8, -9, -10, -11, -13, -17, -19, -20, -21, -23, -24, -26, -27, and MMP-28 expression in seven GBM cell-lines (SNB-19, GaMG, U251, U87, U373, U343, U138) and in four primary cell cultures by semiquantitative RT-PCR, followed changes in the MMP expression pattern with increasing passages of cell culture and examined the influence of TNF-α and TGF-β1 stimulation on the expression of selected MMPs in U251 and U373 cells.</p> <p>MMP-13, -17, -19 and -24 were expressed by all analyzed cell-lines, whereas MMP-20 and MMP-21 were not expressed by any of them. The other MMPs showed variable expression, which was dependent on passage number. Primary cells displayed a similar MMP-expression pattern as the cell-lines. In U251 and U373 cells expression of MMP-9 and MMP-19 was stimulated by TNF-α. MMP-1 mRNA expression was significantly increased in U373 cells, but not in U251 cells by this cytokine. Whereas TGF-β1 had no impact on MMP expression in U251 cells, it significantly induced MMP-11 and MMP-24 expression in U373 cells.</p> <p>Conclusions</p> <p>Literature-data and our own results suggest that the expression pattern of MMPs is highly variable, dependent on the cell-line and the cell-culture conditions used and that also regulation of MMP expression by cytokines is cell-line dependent. This is of high impact for the transfer of cell-culture experiments to clinical implementation.</p

    The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent

    Get PDF
    Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics

    The Efficacy of Tetracyclines in Peripheral and Intracerebral Prion Infection

    Get PDF
    We have previously shown that tetracyclines interact with and reverse the protease resistance of pathological prion protein extracted from scrapie-infected animals and patients with all forms of Creutzfeldt-Jakob disease, lowering the prion titre and prolonging survival of cerebrally infected animals. To investigate the effectiveness of these drugs as anti-prion agents Syrian hamsters were inoculated intramuscularly or subcutaneously with 263K scrapie strain at a 10−4 dilution. Tetracyclines were injected intramuscularly or intraperitoneally at the dose of 10 mg/kg. A single intramuscular dose of doxycycline one hour after infection in the same site of inoculation prolonged median survival by 64%. Intraperitoneal doses of tetracyclines every two days for 40 or 44 days increased survival time by 25% (doxycycline), 32% (tetracycline); and 81% (minocycline) after intramuscular infection, and 35% (doxycycline) after subcutaneous infection. To extend the therapeutic potential of tetracyclines, we investigated the efficacy of direct infusion of tetracyclines in advanced infection. Since intracerebroventricular infusion of tetracycline solutions can cause overt acute toxicity in animals, we entrapped the drugs in liposomes. Animals were inoculated intracerebrally with a 10−4 dilution of the 263K scrapie strain. A single intracerebroventricular infusion of 25 µg/ 20 µl of doxycycline or minocycline entrapped in liposomes was administered 60 days after inoculation, when 50% of animals showed initial symptoms of the disease. Median survival increased of 8.1% with doxycycline and 10% with minocycline. These data suggest that tetracyclines might have therapeutic potential for humans

    Molecular pathology of human prion disease

    Get PDF
    Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF
    corecore