263 research outputs found

    Use of Ethanol-and-Turpentine-Baited Flight Traps to Monitor \u3ci\u3ePissodes\u3c/i\u3e Weevils (Coleoptera: Curculionidae) in Christmas Tree Plantations

    Get PDF
    Pissodes nemorensis and Pissodes strobi are major pests of pine production in eastern North America. Ethanol-and-turpentine baited traps were used here to monitor weevil populations in a Scotch pine Christmas tree plantation in Wisconsin. Baited pitfall traps were ineffective in trapping either weevil species. However, baited flight traps at 0.8 and 1.6 m above ground effectively captured flying weevils of both species, 70% of which were P. nemoren­sis. Females of both species were more attracted than males to the ethanoll turpentine baits. Significantly more female P. nemorensis and total P. nemorensis were trapped at a height of 0.8 m than 1.6 m. There was no significant difference in male P. nemorensis response to the different heights, nor was there a significant difference in response to trap height by P. strobi

    Variation in Lepidopteran Occurrence in Hemlock-Dominated and Deciduous-Dominated Forests of Central Appalachia

    Get PDF
    Eastern hemlock, (Tsuga canadensis Carrière, Pinaceae), is threatened with extirpation by an exotic invasive herbivore, the hemlock woolly adelgid, (Adelges tsugae Annand, Homoptera: Adelgidae). Given this threat, a broader and more detailed knowledge of the community associated with eastern hem- lock is merited. As Lepidoptera are important members of forest communities, this study was initiated to determine the relative occurrence of Lepidoptera in hemlock-dominated and deciduous-dominated habitats by evaluating abundance, species richness, temporal variation, and composition overlap. Lepidoptera were surveyed using blacklight traps from May – August 2010 at two collection sites in the Appalachian region of eastern Kentucky. The first collection site was within a forest stand dominated by mixed deciduous species, the second site possessed an overstory of eastern hemlock. Lepidoptera ≥ 20 mm in wingspan were identified and enumerated, yielding a total of 1,020 individuals of ≥ 137 species and 18 families. The total number of Lepidoptera captured in May and June was fewer than in July and August (P ≤ 0.05). The composition of the assemblage varied between collection sites as well as seasonally; 85 species were identified at the deciduous site and 107 species were identified at the hemlock site. While 27 species were recorded only at the deciduous site, 49 species were unique to the hemlock site. Of those unique to the hemlock site, five species were either detritivores or conifer specialists. These data demonstrate the importance of both deciduous and hemlock-dominated forest habitats for many species of Lepidoptera in Appalachia. Our study forms a foundation for understanding species richness patterns of Lepidoptera in hemlock forests in North America and is a useful baseline for comparisons of richness and diversity post invasion by the hemlock woolly adelgid

    Variation in Lepidopteran Occurrence in Hemlock-Dominated and Deciduous-Dominated Forests of Central Appalachia

    Get PDF
    Eastern hemlock, (Tsuga canadensis Carrière, Pinaceae), is threatened with extirpation by an exotic invasive herbivore, the hemlock woolly adelgid, (Adelges tsugae Annand, Homoptera: Adelgidae). Given this threat, a broader and more detailed knowledge of the community associated with eastern hem- lock is merited. As Lepidoptera are important members of forest communities, this study was initiated to determine the relative occurrence of Lepidoptera in hemlock-dominated and deciduous-dominated habitats by evaluating abundance, species richness, temporal variation, and composition overlap. Lepidoptera were surveyed using blacklight traps from May – August 2010 at two collection sites in the Appalachian region of eastern Kentucky. The first collection site was within a forest stand dominated by mixed deciduous species, the second site possessed an overstory of eastern hemlock. Lepidoptera ≥ 20 mm in wingspan were identified and enumerated, yielding a total of 1,020 individuals of ≥ 137 species and 18 families. The total number of Lepidoptera captured in May and June was fewer than in July and August (P ≤ 0.05). The composition of the assemblage varied between collection sites as well as seasonally; 85 species were identified at the deciduous site and 107 species were identified at the hemlock site. While 27 species were recorded only at the deciduous site, 49 species were unique to the hemlock site. Of those unique to the hemlock site, five species were either detritivores or conifer specialists. These data demonstrate the importance of both deciduous and hemlock-dominated forest habitats for many species of Lepidoptera in Appalachia. Our study forms a foundation for understanding species richness patterns of Lepidoptera in hemlock forests in North America and is a useful baseline for comparisons of richness and diversity post invasion by the hemlock woolly adelgid

    Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed.</p> <p>Methods</p> <p>Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells <it>EGFR </it>amplification analysis, LOH/MSI analysis, and <it>P53 </it>nucleotide sequence analysis were performed.</p> <p>Results</p> <p><it>In vitro </it>differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum.</p> <p>Conclusion</p> <p>Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present <it>in vitro </it>multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.</p

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    A New Species of Saphonecrus (Hymenoptera, Cynipoidea) Associated With Plant Galls on Castanopsis (Fagaceae) in China

    Get PDF
    A new cynipid species, Saphonecrus hupingshanensis Liu, Yang, et Zhu, sp. nov. (Hymenoptera: Cynipidae: Synergini), is described from China. This is the first species of the inquilinous tribe Synergini ever known to have an association with chinquapins (Fagaceae: Castanopsis). The biology and implication to species diversity of Cynipidae in eastern and southeast Asia are discussed

    Synaptically-Competent Neurons Derived from Canine Embryonic Stem Cells by Lineage Selection with EGF and Noggin

    Get PDF
    Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABAA- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model

    Anxiety Levels in Children with Autism Spectrum Disorder:A Meta-Analysis

    Get PDF
    The aim of the current study was to meta-analytically examine whether anxiety levels in children with autism spectrum disorders (ASD) are elevated. A total of 83 articles were selected from a systematic literature search and were included in the meta-analyses. Results demonstrated that children with ASD had higher anxiety levels compared to typically developing children, and this difference increased with IQ. Youth with ASD also tended to have higher anxiety levels compared to clinically referred children, and this difference increased with age. Children with ASD had higher anxiety levels compared to youth with externalizing or developmental problems, but not when compared to youth with internalizing problems. The study findings highlight the importance of more research in order to fully understand the nature and development of anxiety in children with ASD. More specifically, the results suggest that especially high-functioning adolescents with ASD may be at risk for developing anxiety disorders. Therefore, it seems important to carefully follow and monitor children with ASD transcending to adolescenc
    • …
    corecore