90 research outputs found

    A computational approach to investigate TDP-43 C-terminal fragments aggregation in Amyotrophic Lateral Sclerosis

    Full text link
    Many of the molecular mechanisms underlying the pathological aggregation of proteins observed in neurodegenerative diseases are still not fully understood. Among the diseases associated with protein aggregates, for example, Amyotrophic Lateral Sclerosis (ALS) is of relevant importance. Although understanding the processes that cause the disease is still an open challenge, its relationship with protein aggregation is widely known. In particular, human TDP-43, an RNA/DNA binding protein, is a major component of pathological cytoplasmic inclusions described in ALS patients. The deposition of the phosphorylated full-length TDP-43 in spinal cord cells has been widely studied, and it has been shown that the brain cortex presents an accumulation of phosphorylated C-terminal fragments (CTFs). Even if it is debated whether CTFs represent a primary cause of ALS, they are a hallmark of TDP-43 related neurodegeneration in the brain. Here, we investigate the CTFs aggregation process, providing a possible computational model of interaction based on the evaluation of shape complementarity at the interfaces. To this end, extensive Molecular Dynamics (MD) simulations were conducted for different types of fragments with the aim of exploring the equilibrium configurations. Adopting a newly developed approach based on Zernike polynomials, for finding complementary regions of the molecular surface, we sampled a large set of exposed portions of the molecular surface of CTFs structures as obtained from MD simulations. The analysis proposes a set of possible associations between the CTFs, which could drive the aggregation process of the CTFs.Comment: 9 pages, 4 figures, 1 tabl

    Post-operative acute urinary retention after greenlight laser. Analysis of risk factors from a multicentric database

    Get PDF
    Purpose: Greenlight laser is a mini-invasive technique used to treat Benign Prostatic Obstruction (BPO). Some of the advantages of GreenLight photoselective vaporization (PVP) are shorter catheterization time and hospital stay compared to TURP. Post-operative acute urinary retention (pAUR) leads to patients' discomfort, prolonged hospital stay and increased health care costs. We analyzed risk factors for urinary retention after GreenLight laser PVP. Materials and methods: In a multicenter experience, we retrospectively analyzed the onset of early and late post-operative acute urinary retention in patients undergoing standard or anatomical PVP. The pre-, intra- and post-operative characteristics were compared betweene patients who started to void and the patients who developed post-operative urinary retention. Results: The study included 434 patients suitable for the study. Post-operative acute urinary retention occurred in 39 (9%). Patients with a lower prostate volume (P < .001), an adenoma volume lower than 40 mL (P < .001), and lower lasing time (P = .013) had a higher probability to develop pAUR at the univariate analysis. The multivariate logistic regression confirmed that lower lasing time (95% CI: 0.86-0.99, OR = 0.93, P = .046) and adenoma volume (95% CI: 0.89-0.98, OR = 0.94, P = .006) are correlated to pAUR. Furthermore IPSS ≥ 19 (95% CI: 1.19- 10.75, OR = 2.27, P = .023) and treatment with 5-ARI (95% CI: 1.05-15.03, OR = 3.98, P = .042) are risk factors for pAUR. Conclusion: In our series, post-operative acute urinary retention was related to low adenoma volume and lasing time, pre-operative IPSS ≥ 19 and 5-ARI intake. These data should be considered in deciding the best timing for urethral catheters removal

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Erratum to nodal management and upstaging of disease. Initial results from the Italian VATS Lobectomy Registry

    Get PDF
    [This corrects the article DOI: 10.21037/jtd.2017.06.12.]

    Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.

    Get PDF
    BACKGROUND: According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. METHODS/PRINCIPAL FINDINGS: A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities--and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy--probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. CONCLUSIONS/SIGNIFICANCE: Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
    corecore