242 research outputs found

    The dynamics of cardiolipin synthesis post-mitochondrial fusion

    Get PDF
    AbstractAlteration in mitochondrial fusion may regulate mitochondrial metabolism. Since the phospholipid cardiolipin (CL) is required for function of the mitochondrial respiratory chain, we examined the dynamics of CL synthesis in growing Hela cells immediately after and 12h post-fusion. Cells were transiently transfected with Mfn-2, to promote fusion, or Mfn-2 expressing an inactive GTPase for 24h and de novo CL biosynthesis was examined immediately after or 12h post-fusion. Western blot analysis confirmed elevated Mfn-2 expression and electron microscopic analysis revealed that Hela cell mitochondrial structure was normal immediately after and 12h post-fusion. Cells expressing Mfn-2 exhibited reduced CL de novo biosynthesis from [1,3-3H]glycerol immediately after fusion and this was due to a decrease in phosphatidylglycerol phosphate synthase (PGPS) activity and its mRNA expression. In contrast, 12h post-mitochondrial fusion cells expressing Mfn-2 exhibited increased CL de novo biosynthesis from [1,3-3H]glycerol and this was due to an increase in PGPS activity and its mRNA expression. Cells expressing Mfn-2 with an inactive GTPase activity did not exhibit alterations in CL de novo biosynthesis immediately after or 12h post-fusion. The Mfn-2 mediated alterations in CL de novo biosynthesis were not accompanied by alterations in CL or monolysoCL mass. [1-14C]Oleate incorporation into CL was elevated at 12h post-fusion indicating increased CL resynthesis. The reason for the increased CL resynthesis was an increased mRNA expression of tafazzin, a mitochondrial CL resynthesis enzyme. Ceramide-induced expression of PGPS in Hela cells or in CHO cells did not alter expression of Mfn-2 indicating that Mfn-2 expression is independent of altered CL synthesis mediated by elevated PGPS. In addition, Mfn-2 expression was not altered in Hela cells expressing phospholipid scramblase-3 or a disrupted scramblase indicating that proper CL localization within mitochondria is not essential for Mfn-2 expression. The results suggest that immediately post-mitochondrial fusion CL de novo biosynthesis is “slowed down” and then 12h post-fusion it is “upregulated”. The implications of this are discussed

    Cardiolipin provides an essential activating platform for caspase-8 on mitochondria

    Get PDF
    Cardiolipin is a mitochondria-specific phospholipid known to be intimately involved with apoptosis. However, the lack of appropriate cellular models to date restricted analysis of its role in cell death. The maturation of cardiolipin requires the transacylase tafazzin, which is mutated in the human disorder Barth syndrome. Using Barth syndrome patient-derived cells and HeLa cells in which tafazzin was knocked down, we show that cardiolipin is required for apoptosis in the type II mitochondria-dependent response to Fas stimulation. Cardiolipin provides an anchor and activating platform for caspase-8 translocation to, and embedding in, the mitochondrial membrane, where it oligomerizes and is further activated, steps that are necessary for an efficient type II apoptotic response

    Mitochondrial Dysfunction Underlies Cardiomyocyte Remodeling in Experimental and Clinical Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF), the most common progressive tachyarrhythmia, results in structural remodeling which impairs electrical activation of the atria, rendering them increasingly permissive to the arrhythmia. Previously, we reported on endoplasmic reticulum stress and NAD+ depletion in AF, suggesting a role for mitochondrial dysfunction in AF progression. Here, we examined mitochondrial function in experimental model systems for AF (tachypaced HL-1 atrial cardiomyocytes and Drosophila melanogaster) and validated findings in clinical AF. Tachypacing of HL-1 cardiomyocytes progressively induces mitochondrial dysfunction, evidenced by impairment of mitochondrial Ca2+-handling, upregulation of mitochondrial stress chaperones and a decrease in the mitochondrial membrane potential, respiration and ATP production. Atrial biopsies from AF patients display mitochondrial dysfunction, evidenced by aberrant ATP levels, upregulation of a mitochondrial stress chaperone and fragmentation of the mitochondrial network. The pathophysiological role of mitochondrial dysfunction is substantiated by the attenuation of AF remodeling by preventing an increased mitochondrial Ca2+-influx through partial blocking or downregulation of the mitochondrial calcium uniporter, and by SS31, a compound that improves bioenergetics in mitochondria. Together, these results show that conservation of the mitochondrial function protects against tachypacing-induced cardiomyocyte remodeling and identify this organelle as a potential novel therapeutic target

    Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research.

    Get PDF
    In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health

    Коммутационные перенапряжения в сетях высокого напряжения

    Get PDF
    Исследование коммутационных перенапряжений в высоковольтных сетях. В работе проводилось моделирование коммутационных перенапряжений в двух расчётных программах. Был произведён подбор защитного оборудования.Research of surge overvoltages in high-voltage grids. The simulation of surge overvoltages in two computational programs was carried out. A selection of protective equipment was made

    Антицитрулінові антитіла в діагностиці артритів у дітей

    Get PDF
    Віходячи з проведеного дослідження, описаного в роботі, можна дійти висновку, що серед дітей із різними формами артритів тільки 4,8% пацієнтів були серопозитивними за РФ, та 23,8% дітей – за рівнем АЦЦП. Прогнастичне значення підвищеного рівня АЦЦП у дітей із РеА полягає в високій вірогідності розвитку ЮРА, що обумовлює більш ретельне їх спостереження із застосуванням індивідуальних схем профілактичного лікування. При цитуванні документа, використовуйте посилання http://essuir.sumdu.edu.ua/handle/123456789/1128

    A method to identify and validate mitochondrial modulators using mammalian cells and the worm C-elegans

    Get PDF
    Mitochondria are semi-autonomous organelles regulated by a complex network of proteins that are vital for many cellular functions. Because mitochondrial modulators can impact many aspects of cellular homeostasis, their identification and validation has proven challenging. It requires the measurement of multiple parameters in parallel to understand the exact nature of the changes induced by such compounds. We developed a platform of assays scoring for mitochondrial function in two complementary models systems, mammalian cells and C. elegans. We first optimized cell culture conditions and established the mitochondrial signature of 1,200 FDA-approved drugs in liver cells. Using cell-based and C. elegans assays, we further defined the metabolic effects of two pharmacological classes that emerged from our hit list, i.e. imidazoles and statins. We found that these two drug classes affect respiration through different and cholesterol-independent mechanisms in both models. Our screening strategy enabled us to unequivocally identify compounds that have toxic or beneficial effects on mitochondrial activity. Furthermore, the cross-species approach provided novel mechanistic insight and allowed early validation of hits that act on mitochondrial function

    A Conserved Mito-Cytosolic Translational Balance Links Two Longevity Pathways.

    Get PDF
    Slowing down translation in either the cytosol or the mitochondria is a conserved longevity mechanism. Here, we found a non-interventional natural correlation of mitochondrial and cytosolic ribosomal proteins (RPs) in mouse population genetics, suggesting a translational balance. Inhibiting mitochondrial translation in C. elegans through mrps-5 RNAi repressed cytosolic translation. Transcriptomics integrated with proteomics revealed that this inhibition specifically reduced translational efficiency of mRNAs required in growth pathways while increasing stress response mRNAs. The repression of cytosolic translation and extension of lifespan from mrps-5 RNAi were dependent on atf-5/ATF4 and independent from metabolic phenotypes. We found the translational balance to be conserved in mammalian cells upon inhibiting mitochondrial translation pharmacologically with doxycycline. Lastly, extending this in vivo, doxycycline repressed cytosolic translation in the livers of germ-free mice. These data demonstrate that inhibiting mitochondrial translation initiates an atf-5/ATF4-dependent cascade leading to coordinated repression of cytosolic translation, which could be targeted to promote longevity
    corecore