9,240 research outputs found

    Nonequilibrium Dynamics and Aging in the Three--Dimensional Ising Spin Glass Model

    Full text link
    The low temperature dynamics of the three dimensional Ising spin glass in zero field with a discrete bond distribution is investigated via MC simulations. The thermoremanent magnetization is found to decay algebraically and the temperature dependent exponents agree very well with the experimentally determined values. The nonequilibrium autocorrelation function C(t,tw)C(t,t_w) shows a crossover at the waiting (or {\em aging}) time twt_w from algebraic {\em quasi-equilibrium} decay for times tt≪\lltwt_w to another, faster algebraic decay for tt≫\ggtwt_w with an exponent similar to one for the remanent magnetization.Comment: Revtex, 11 pages + 4 figures (included as Latex-files

    Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice

    Full text link
    The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the transverse field (Gamma) and temperature (T) plane for various (fixed) concentrations (p). The nature of the quantum Griffiths phase at zero temperature is investigated by calculating the distribution of the local zero-frequency susceptibility. It is pointed out that the nature of the Griffiths phase is different for small and large Gamma.Comment: 21 LaTeX (JPSJ macros included), 12 eps-figures include

    Low-dimensional chaos induced by frustration in a non-monotonic system

    Full text link
    We report a novel mechanism for the occurrence of chaos at the macroscopic level induced by the frustration of interaction, namely frustration-induced chaos, in a non-monotonic sequential associative memory model. We succeed in deriving exact macroscopic dynamical equations from the microscopic dynamics in the case of the thermodynamic limit and prove that two order parameters dominate this large-degree-of-freedom system. Two-parameter bifurcation diagrams are obtained from the order-parameter equations. Then we analytically show that the chaos is low-dimensional at the macroscopic level when the system has some degree of frustration, but that the chaos definitely does not occur without the frustration.Comment: 2 figure

    The TID model for modulation of large scale electron density models

    Get PDF
    Various modern applications of empirical electron density models need realistic structures of the electron density distribution with smaller scales than the model background. Travelling Ionospheric Disturbances (TIDs) produce three dimensional and time dependent disturbances of the background ionization. We present a TID model suitable to «modulate» large scale electron density distributions by multiplication. A model TID takes into account the forward tilt of the disturbance wave front, a distinct vertical structure, a fan type horizontal radiation characteristic, geometric dilution and attenuation. More complicated radiation patterns can be constructed by means of superposition. The model TIDs originate from source regions which can be chosen arbitrarily. We show examples for TID modulations of the background model family developed at Trieste and Graz (NeQuick, COSTprof and NeUoG-plas)

    Probing the central black hole in M87 with gamma-rays

    Full text link
    Recent high-sensitivity observation of the nearby radio galaxy M87 have provided important insights into the central engine that drives the large-scale outflows seen in radio, optical and X-rays. This review summarizes the observational status achieved in the high energy (HE;<100 GeV) and very high energy (VHE; >100 GeV) gamma-ray domains, and discusses the theoretical progress in understanding the physical origin of this emission and its relation to the activity of the central black hole.Comment: Invited compact review to be published in Modern Physics Letters A; 19 pages, 4 figure

    Non-thermal Processes in Black-Hole-Jet Magnetospheres

    Full text link
    The environs of supermassive black holes are among the universe's most extreme phenomena. Understanding the physical processes occurring in the vicinity of black holes may provide the key to answer a number of fundamental astrophysical questions including the detectability of strong gravity effects, the formation and propagation of relativistic jets, the origin of the highest energy gamma-rays and cosmic-rays, and the nature and evolution of the central engine in Active Galactic Nuclei (AGN). As a step towards this direction, this paper reviews some of the progress achieved in the field based on observations in the very high energy domain. It particularly focuses on non-thermal particle acceleration and emission processes that may occur in the rotating magnetospheres originating from accreting, supermassive black hole systems. Topics covered include direct electric field acceleration in the black hole's magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek mechanism, centrifugal acceleration and magnetic reconnection, along with the relevant efficiency constraints imposed by interactions with matter, radiation and fields. By way of application, a detailed discussion of well-known sources (Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49 pages, 15 figures; minor typos corrected to match published versio

    Critical Behavior and Griffiths-McCoy Singularities in the Two-Dimensional Random Quantum Ising Ferromagnet

    Full text link
    We study the quantum phase transition in the two-dimensional random Ising model in a transverse field by Monte Carlo simulations. We find results similar to those known analytically in one-dimension. At the critical point, the dynamical exponent is infinite and the typical correlation function decays with a stretched exponential dependence on distance. Away from the critical point there are Griffiths-McCoy singularities, characterized by a single, continuously varying exponent, z', which diverges at the critical point, as in one-dimension. Consequently, the zero temperature susceptibility diverges for a RANGE of parameters about the transition.Comment: 4 pages RevTeX, 3 eps-figures include

    Increased plasticity of the bodily self in eating disorders

    Get PDF
    Background: The rubber hand illusion (RHI) has been widely used to investigate the bodily self in healthy individuals. The aim of the present study was to extend the use of the RHI to examine the bodily self in eating disorders. Methods: The RHI and self-report measures of eating disorder psychopathology (EDI-3 subscales of Drive for Thinness, Bulimia, Body Dissatisfaction, Interoceptive Deficits, and Emotional Dysregulation; DASS-21; and the Self-Objectification Questionnaire) were administered to 78 individuals with an eating disorder and 61 healthy controls. Results: Individuals with an eating disorder experienced the RHI significantly more strongly than healthy controls on both perceptual (i.e., proprioceptive drift) and subjective (self-report questionnaire) measures. Furthermore, both the subjective experience of the RHI and associated proprioceptive biases were correlated with eating disorder psychopathology. Approximately 20% of the variance for embodiment of the fake hand was accounted for by eating disorder psychopathology, with interoceptive deficits and self-objectification significant predictors of embodiment. Conclusions: These results indicate that the bodily self is more plastic in people with an eating disorder. These findings may shed light on both aetiological and maintenance factors involved in eating disorders, particularly visual processing of the body, interoceptive deficits, and self-objectification

    Ground state properties of fluxlines in a disordered environment

    Full text link
    A new numerical method to calculate exact ground states of multi-fluxline systems with quenched disorder is presented, which is based on the minimum cost flow algorithm from combinatorial optimization. We discuss several models that can be studied with this method including their specific implementations, physically relevant observables and results: 1) the N-line model with N fluxlines (or directed polymers) in a d-dimensional environment with point and/or columnar disorder and hard or soft core repulsion; 2) the vortex glass model for a disordered superconductor in the strong screening limit and 3) the Sine-Gordon model with random pase shifts in the strong coupling limit.Comment: 4 pages RevTeX, 3 eps-figures include
    • …
    corecore