6,296 research outputs found

    Chaos in the Random Field Ising Model

    Get PDF
    The sensitivity of the random field Ising model to small random perturbations of the quenched disorder is studied via exact ground states obtained with a maximum-flow algorithm. In one and two space dimensions we find a mild form of chaos, meaning that the overlap of the old, unperturbed ground state and the new one is smaller than one, but extensive. In three dimensions the rearrangements are marginal (concentrated in the well defined domain walls). Implications for finite temperature variations and experiments are discussed.Comment: 4 pages RevTeX, 6 eps-figures include

    Critical Exponents of the Three Dimensional Random Field Ising Model

    Full text link
    The phase transition of the three--dimensional random field Ising model with a discrete (±h\pm h) field distribution is investigated by extensive Monte Carlo simulations. Values of the critical exponents for the correlation length, specific heat, susceptibility, disconnected susceptibility and magnetization are determined simultaneously via finite size scaling. While the exponents for the magnetization and disconnected susceptibility are consistent with a first order transition, the specific heat appears to saturate indicating no latent heat. Sample to sample fluctuations of the susceptibilty are consistent with the droplet picture for the transition.Comment: Revtex, 10 pages + 4 figures included as Latex files and 1 in Postscrip

    Non-thermal Processes in Black-Hole-Jet Magnetospheres

    Full text link
    The environs of supermassive black holes are among the universe's most extreme phenomena. Understanding the physical processes occurring in the vicinity of black holes may provide the key to answer a number of fundamental astrophysical questions including the detectability of strong gravity effects, the formation and propagation of relativistic jets, the origin of the highest energy gamma-rays and cosmic-rays, and the nature and evolution of the central engine in Active Galactic Nuclei (AGN). As a step towards this direction, this paper reviews some of the progress achieved in the field based on observations in the very high energy domain. It particularly focuses on non-thermal particle acceleration and emission processes that may occur in the rotating magnetospheres originating from accreting, supermassive black hole systems. Topics covered include direct electric field acceleration in the black hole's magnetosphere, ultra-high energy cosmic ray production, Blandford-Znajek mechanism, centrifugal acceleration and magnetic reconnection, along with the relevant efficiency constraints imposed by interactions with matter, radiation and fields. By way of application, a detailed discussion of well-known sources (Sgr A*; Cen A; M87; NGC1399) is presented.Comment: invited review for International Journal of Modern Physics D, 49 pages, 15 figures; minor typos corrected to match published versio

    Helical motion and the origin of QPO in blazar-type sources

    Full text link
    Recent observations and analysis of blazar sources provide strong evidence for (i) the presence of significant periodicities in their lightcurves and (ii) the occurrence of helical trajectories in their radio jets. In scenarios, where the periodicity is caused by differential Doppler boosting effects along a helical jet path, both of these facts may be naturally tied together. Here we discuss four possible driving mechanisms for the occurrence of helical trajectories: orbital motion in a binary system, Newtonian-driven jet precession, internal jet rotation and motion along a global helical magnetic field. We point out that for non-ballistic helical motion the observed period may appear strongly shortened due to classical travel time effects. Finally, the possible relevance of the above mentioned driving mechanisms is discussed for Mkn~501, OJ 287 and AO 0235+16.Comment: 6 pages, 1 figure; presented at the 5th Microquasar Workshop, Beijing, June 2004. Accepted for publication in the Chinese Journal of Astronomy and Astrophysic

    MBE Growth of Al/InAs and Nb/InAs Superconducting Hybrid Nanowire Structures

    Full text link
    We report on \textit{in situ} growth of crystalline Al and Nb shells on InAs nanowires. The nanowires are grown on Si(111) substrates by molecular beam epitaxy (MBE) without foreign catalysts in the vapor-solid mode. The metal shells are deposited by electron-beam evaporation in a metal MBE. High quality supercondonductor/semiconductor hybrid structures such as Al/InAs and Nb/InAs are of interest for ongoing research in the fields of gateable Josephson junctions and quantum information related research. Systematic investigations of the deposition parameters suitable for metal shell growth are conducted. In case of Al, the substrate temperature, the growth rate and the shell thickness are considered. The substrate temperature as well as the angle of the impinging deposition flux are explored for Nb shells. The core-shell hybrid structures are characterized by electron microscopy and x-ray spectroscopy. Our results show that the substrate temperature is a crucial parameter in order to enable the deposition of smooth Al layers. Contrary, Nb films are less dependent on substrate temperature but strongly affected by the deposition angle. At a temperature of 200{\deg}C Nb reacts with InAs, dissolving the nanowire crystal. Our investigations result in smooth metal shells exhibiting an impurity and defect free, crystalline superconductor/InAs interface. Additionally, we find that the superconductor crystal structure is not affected by stacking faults present in the InAs nanowires.Comment: 8 pages, 10 figures, 1 tabl

    Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    Full text link
    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confronted with numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution show multi-scaling character. In the Griffiths phase, which is an extended part of the off-critical region average autocorrelations have a power-law form with a non-universal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.Comment: 19 pages RevTeX, eps-figures include

    Fast predictive maintenance in Industrial Internet of Things (IIoT) with Deep Learning (DL): A review

    Get PDF
    Applying Deep Learning in the field of Industrial Internet of Things is a very active research field. The prediction of failures of machines and equipment in industrial environments before their possible occurrence is also a very popular topic, significantly because of its cost saving potential. Predictive Maintenance (PdM) applications can benefit from DL, especially because of the fact that high complex, non-linear and unlabeled (or partially labeled) data is the normal case. Especially with PdM applications being used in connected smart factories, low latency predictions are essential. Because of this real-time processing becomes more important. The aim of this paper is to provide a narrative review of the most current research covering trends and projects regarding the application of DL methods in IoT environments. Especially papers discussing the area of predictions and real-time processing with DL models are selected because of their potential use for PdM applications. The reviewed papers were selected by the authors based on a qualitative rather than a quantitative level

    Overlap Among States at Different Temperatures in the SK Model

    Full text link
    We discuss the issue of temperature chaos in the Sherrington--Kirkpatrick spin glass mean field model. We numerically compute probability distributions of the overlap among (equilibrium) configurations at two different values of the temperature, both in the spin glass phase. The situation on our medium size systems is clearly non-chaotic, but a weak form of chaos could be emerging on very large lattices.Comment: 4 pages in aps format including 8 ps figures. Small change

    On entanglement evolution across defects in critical chains

    Get PDF
    We consider a local quench where two free-fermion half-chains are coupled via a defect. We show that the logarithmic increase of the entanglement entropy is governed by the same effective central charge which appears in the ground-state properties and which is known exactly. For unequal initial filling of the half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde

    Evidences Against Temperature Chaos in Mean Field and Realistic Spin Glasses

    Full text link
    We discuss temperature chaos in mean field and realistic 3D spin glasses. Our numerical simulations show no trace of a temperature chaotic behavior for the system sizes considered. We discuss the experimental and theoretical implications of these findings.Comment: 4 pages in aps format. 6 .ps figures. It is better to print the paper in colou
    • …
    corecore