2,350 research outputs found

    Free-living flatworms under the knife: past and present

    Get PDF
    Traditionally, regeneration research has been closely tied to flatworm research, as flatworms (Plathelminthes) were among the first animals where the phenomenon of regeneration was discovered. Since then, the main focus of flatworm regeneration research was on triclads, for which various phenomena were observed and a number of theories developed. However, free-living flatworms encompass a number of other taxa where regeneration was found to be possible. This review aims to display and to compare regeneration in all major free-living flatworm taxa, with special focus on a new player in the field of regeneration, Macrostomum lignano (Macrostomorpha). Findings on the regeneration capacity of this organism provide clues for links between regeneration and (post-)embryonic development, starvation, and asexual reproduction. The role of the nervous system and especially the brain for regeneration is discussed, and similarities as well as particularities in regeneration among free-living flatworms are pointed out

    Missense Mutation of POU Domain Class 3 Transcription Factor 3 in Pou3f3(L423P) Mice Causes Reduced Nephron Number and Impaired Development of the Thick Ascending Limb of the Loop of Henle

    Get PDF
    During nephrogenesis, POU domain class 3 transcription factor 3 (POU3F3 aka BRN1) is critically involved in development of distinct nephron segments, including the thick ascending limb of the loop of Henle (TAL). Deficiency of POU3F3 in knock-out mice leads to underdevelopment of the TAL, lack of differentiation of TAL cells, and perinatal death due to renal failure. Pou3f3(L423P) mutant mice, which were established in the Munich ENU Mouse Mutagenesis Project, carry a recessive point mutation in the homeobox domain of POU3F3. Homozygous Pou3f3(L423P) mutants are viable and fertile. The present study used functional, as well as qualitative and quantitative morphological analyses to characterize the renal phenotype of juvenile (12 days) and aged (60 weeks) homo-and heterozygous Pou3f3(L423P) mutant mice and age-matched wild-type controls. In both age groups, homozygous mutants vs. control mice displayed significantly smaller kidney volumes, decreased nephron numbers and mean glomerular volumes, smaller TAL volumes, as well as lower volume densities of the TAL in the kidney. No histological or ultrastructural lesions of TAL cells or glomerular cells were observed in homozygous mutant mice. Aged homozygous mutants displayed increased serum urea concentrations and reduced specific urine gravity, but no evidence of glomerular dysfunction. These results confirm the role of POU3F3 in development and function of the TAL and provide new evidence for its involvement in regulation of the nephron number in the kidney. Therefore, Pou3f3(L423P) mutant mice represent a valuable research model for further analyses of POU3F3 functions, or for nephrological studies examining the role of congenital low nephron numbers

    Impurity of Stem Cell Graft by Murine Embryonic Fibroblasts – Implications for Cell-Based Therapy of the Central Nervous System

    Get PDF
    Stem cells have been demonstrated to possess a therapeutic potential in experimental models of various central nervous system disorders, including stroke. The types of implanted cells appear to play a crucial role. Previously, groups of the stem cell network NRW implemented a feeder-based cell line within the scope of their projects, examining the implantation of stem cells after ischemic stroke and traumatic brain injury. Retrospective evaluation indicated the presence of spindle-shaped cells in several grafts implanted in injured animals, which indicated potential contamination by co-cultured feeder cells (murine embryonic fibroblasts – MEFs). Because feeder-based cell lines have been previously exposed to a justified criticism with regard to contamination by animal glycans, we aimed to evaluate the effects of stem cell/MEF co-transplantation. MEFs accounted for 5.3 ± 2.8% of all cells in the primary FACS-evaluated co-culture. Depending on the culture conditions and subsequent purification procedure, the MEF-fraction ranged from 0.9 to 9.9% of the cell suspensions in vitro. MEF survival and related formation of extracellular substances in vivo were observed after implantation into the uninjured rat brain. Impurity of the stem cell graft by MEFs interferes with translational strategies, which represents a threat to the potential recipient and may affect the graft microenvironment. The implications of these findings are critically discussed

    Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    Get PDF
    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many stateof- science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations that do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity

    Tickborne Encephalitis in Naturally Exposed Monkey (Macaca sylvanus)

    Get PDF
    We describe tickborne encephalitis (TBE) in a monkey (Macaca sylvanus) after natural exposure in an area at risk for TBE. TBE virus was present in the brain and could be identified as closely related to the European subtype, strain Neudoerfl

    Topological Defects in the Random-Field XY Model and the Pinned Vortex Lattice to Vortex Glass Transition in Type-II Superconductors

    Full text link
    As a simplified model of randomly pinned vortex lattices or charge-density waves, we study the random-field XY model on square (d=2d=2) and simple cubic (d=3d=3) lattices. We verify in Monte Carlo simulations, that the average spacing between topological defects (vortices) diverges more strongly than the Imry-Ma pinning length as the random field strength, HH, is reduced. We suggest that for d=3d=3 the simulation data are consistent with a topological phase transition at a nonzero critical field, HcH_c, to a pinned phase that is defect-free at large length-scales. We also discuss the connection between the possible existence of this phase transition in the random-field XY model and the magnetic field driven transition from pinned vortex lattice to vortex glass in weakly disordered type-II superconductors.Comment: LATEX file; 5 Postscript figures are available from [email protected]

    Detailed spectral and morphological analysis of the shell type SNR RCW 86

    Full text link
    Aims: We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW~86 and for insights into the production mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods: We analyzed High Energy Spectroscopic System data that had increased sensitivity compared to the observations presented in the RCW~86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results:We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5~keV X-ray data reveals a correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is best described by a power law with an exponential cutoff at Ecut=(3.5±1.2stat)E_{cut}=(3.5\pm 1.2_{stat}) TeV and a spectral index of Γ\Gamma~1.6±0.21.6\pm 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW~86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to \sim0.1\% of the initial kinetic energy of a Type I a supernova explosion. When using a hadronic model, a magnetic field of BB~100μ\muG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E2^{-2} spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Γp\Gamma_p~1.7 would be required, which implies that ~7×1049/ncm37\times 10^{49}/n_{cm^{-3}}erg has been transferred into high-energy protons with the effective density ncm3=n/1n_{cm^{-3}}=n/ 1 cm^-3. This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
    corecore