987 research outputs found

    The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates

    Get PDF
    Degeneration of nigrostriatal dopaminergic neurons is the primary histopathological feature of Parkinson's disease. The neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induces a neurological syndrome in man and non-human primates very similar to idiopathic Parkinson's disease by selectively destroying dopaminergic nigrostriatal neurons. This gives rise to the hypothesis that Parkinson's disease may be caused by endogenous or environmental toxins. Endogenous excitatory amino acids (EAAs) such as L-glutamate could be involved in neurodegenerative disorders including Parkinson's disease. We report in this study that the competitive NMDA antagonist CPP (3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid) protects nigral tyrosine hydroxylase (TH) positive neurons from degeneration induced by systemic treatment with MPTP in common marmosets. This indicates that EAAs are involved in the pathophysiological cascade of MPTP-induced neuronal cell death and that EAA antagonists may offer a neuroprotective therapy for Parkinson's disease

    Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

    Get PDF
    The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria

    Transcriptional alterations under continuous or pulsatile dopaminergic treatment in dyskinetic rats

    Get PDF
    Continuous dopaminergic treatment is considered to prevent or delay the occurrence of dyskinesia in patients with Parkinson's disease (PD). Rotigotine is a non-ergolinic D3>D2>D1 dopamine-receptor agonist for the treatment of PD using a transdermal delivery system providing stable plasma levels. We aimed to investigate the differential influence on gene expression of pulsatile l-DOPA or rotigotine versus a continuous rotigotine treatment. The gene expression profile within the nigro-striatal system of unilateral 6-hydroxydopamine-lesioned rats was assessed in order to differentiate potential changes in gene expression following the various treatment using Affymetrix microarrays and quantitative RT-PCR. The expression of 15 genes in the substantia nigra and of 11 genes in the striatum was altered under pulsatile treatments inducing dyskinetic motor response, but was unchanged under continuous rotigotine treatment that did not cause dyskinetic motor response. The route of administration of a dopaminergic drug is important for the induction or prevention of motor abnormalities and adaptive gene expressions. The decline of neurotrophin-3 expression under pulsatile administration was considered of particular importanc

    Modeling sporadic alzheimer's disease: the insulin resistant brain state generates multiple long-term morphobiological abnormalities inclusive hyperphosphorylated tau protein and amyloid-beta. A Synthesis

    Full text link
    Nosologically, Alzheimer's disease (AD) is not a single disorder. Missense gene mutations involved in increased formation of the amyloid-beta protein precursor derivatives amyloid-beta (Abeta)_{1-40} and Abeta_{1-42/43} lead to autosomal dominant familial AD, found in the minority of AD cases. However, millions of subjects suffer from sporadic AD (sAD) of late onset, for which no convincing evidence suggests Abeta as the primary disease-generating compound. Environmental factors operating during pregnancy and postnatally may affect susceptibility genes and stress factors (e.g., cortisol), consequently affecting brain development both structurally and functionally, causing disorders becoming manifest late in life. With aging, a desynchronization of biological systems may result, increasing further brain entropy/declining criticality. In sAD, this desynchronization may involve stress components, cortisol and noradrenaline, reactive oxygen species, and membrane damage as major candidates causing an insulin resistant brain state with decreased glucose/energy metabolism. This further leads to a derangement of ATP-dependent cellular and molecular work, of the cell function in general, as well as derangements in the endoplasmic reticulum/Golgi apparatus, axon, synapses, and membranes, in particular. A self-propagating process is thus generated, including the increased formation of hyperphosphorylated tau-protein and Abeta as abnormal terminal events in sAD rather than causing the disorder, as elaborated in the review

    A Method to screen U.S. environmental biomonitoring data for race/ethnicity and income-related disparity

    Get PDF
    BACKGROUND: Environmental biomonitoring data provide one way to examine race/ethnicity and income-related exposure disparity and identify potential environmental justice concerns. METHODS: We screened U.S. National Health and Nutrition Examination Survey (NHANES) 2001–2008 biomonitoring data for 228 chemicals for race/ethnicity and income-related disparity. We defined six subgroups by race/ethnicity—Mexican American, non-Hispanic black, non-Hispanic white—and income—Low Income: poverty income ratio (PIR) <2, High Income: PIR ≥ 2. We assessed disparity by comparing the central tendency (geometric mean [GM]) of the biomonitoring concentrations of each subgroup to that of the reference subgroup (non-Hispanic white/High Income), adjusting for multiple comparisons using the Holm-Bonferroni procedure. RESULTS: There were sufficient data to estimate at least one geometric mean ratio (GMR) for 108 chemicals; 37 had at least one GMR statistically different from one. There was evidence of potential environmental justice concern (GMR significantly >1) for 12 chemicals: cotinine; antimony; lead; thallium; 2,4- and 2,5-dichlorophenol; p,p’-dichlorodiphenyldichloroethylene; methyl and propyl paraben; and mono-ethyl, mono-isobutyl, and mono-n-butyl phthalate. There was also evidence of GMR significantly <1 for 25 chemicals (of which 17 were polychlorinated biphenyls). CONCLUSIONS: Although many of our results were consistent with the U.S. literature, findings relevant to environmental justice were novel for dichlorophenols and some metals

    Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?

    Get PDF
    Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties

    Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?

    Get PDF
    Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs-the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties
    • …
    corecore