1,830 research outputs found

    Density of states at disorder-induced phase transitions in a multichannel Majorana wire

    Get PDF
    An NN-channel spinless p-wave superconducting wire is known to go through a series of NN topological phase transitions upon increasing the disorder strength. Here, we show that at each of those transitions the density of states shows a Dyson singularity Îœ(Δ)∝Δ−1∣lnâĄÎ”âˆŁâˆ’3\nu(\varepsilon) \propto \varepsilon^{-1}|\ln\varepsilon|^{-3} , whereas Îœ(Δ)âˆÎ”âˆŁÎ±âˆŁâˆ’1\nu(\varepsilon) \propto \varepsilon^{|\alpha|-1} has a power-law singularity for small energies Δ\varepsilon away from the critical points. Using the concept of "superuniversality" [Gruzberg, Read, and Vishveshwara, Phys. Rev. B 71, 245124 (2005)], we are able to relate the exponent α\alpha to the wire's transport properties at zero energy and, hence, to the mean free path ll and the superconducting coherence length Ο\xi.Comment: 4+1 pages, 3 figure

    Reentrant topological phase transitions in a disordered spinless superconducting wire

    Get PDF
    In a one-dimensional spinless p-wave superconductor with coherence length \xi, disorder induces a phase transition between a topologically nontrivial phase and a trivial insulating phase at the critical mean free path l=\xi/2. Here, we show that a multichannel spinless p-wave superconductor goes through an alternation of topologically trivial and nontrivial phases upon increasing the disorder strength, the number of phase transitions being equal to the channel number N. The last phase transition, from a nontrivial phase into the trivial phase, takes place at a mean free path l = \xi/(N+1), parametrically smaller than the critical mean free path in one dimension. Our result is valid in the limit that the wire width W is much smaller than the superconducting coherence length \xi

    Endstates in multichannel spinless p-wave superconducting wires

    Get PDF
    Multimode spinless p-wave superconducting wires with a width W much smaller than the superconducting coherence length \xi are known to have multiple low-energy subgap states localized near the wire's ends. Here we compare the typical energies of such endstates for various terminations of the wire: A superconducting wire coupled to a normal-metal stub, a weakly disordered superconductor wire and a wire with smooth confinement. Depending on the termination, we find that the energies of the subgap states can be higher or lower than for the case of a rectangular wire with hard-wall boundaries.Comment: 10 pages, 7 figure

    Congenital heart anomalies in the first trimester: From screening to diagnosis.

    Get PDF
    Congenital heart defects occur in approximately 1% of liveborn children and represent the most common form of congenital malformation. Due to the small size and complexity of the heart structures, prenatal diagnosis is most often made in the second trimester of pregnancy. Early diagnosis however offers significant advantages regarding the timing of further investigations, prenatal counseling, and access to management options. In the last decade, advances in antenatal imaging have improved the detection of cardiac malformations with increasing emphasis on earlier pregnancy screening and diagnosis. We aim to summarize current "state of the art" imaging of the fetal heart in the first trimester

    Snell's law for surface electrons: Refraction of an electron gas imaged in real space

    Get PDF
    On NaCl(100)/Cu(111) an interface state band is observed that descends from the surface-state band of the clean copper surface. This band exhibits a Moire-pattern-induced one-dimensional band gap, which is accompanied by strong standing-wave patterns, as revealed in low-temperature scanning tunneling microscopy images. At NaCl island step edges, one can directly see the refraction of these standing waves, which obey Snell's refraction law.Comment: 4 pages, 4 figure

    Scattering of rare-gas atoms at a metal surface: evidence of anticorrugation of the helium-atom potential-energy surface and the surface electron density

    Full text link
    Recent measurements of the scattering of He and Ne atoms at Rh(110) suggest that these two rare-gas atoms measure a qualitatively different surface corrugation: While Ne atom scattering seemingly reflects the electron-density undulation of the substrate surface, the scattering potential of He atoms appears to be anticorrugated. An understanding of this perplexing result is lacking. In this paper we present density functional theory calculations of the interaction potentials of He and Ne with Rh(110). We find that, and explain why, the nature of the interaction of the two probe particles is qualitatively different, which implies that the topographies of their scattering potentials are indeed anticorrugated.Comment: RevTeX, 4 pages, 10 figure

    Centrosome-independent mitotic spindle formation in vertebrates

    Get PDF
    AbstractBackground: In cells lacking centrosomes, the microtubule-organizing activity of the centrosome is substituted for by the combined action of chromatin and molecular motors. The question of whether a centrosome-independent pathway for spindle formation exists in vertebrate somatic cells, which always contain centrosomes, remains unanswered, however. By a combination of labeling with green fluorescent protein (GFP) and laser microsurgery we have been able to selectively destroy centrosomes in living mammalian cells as they enter mitosis.Results: We have established a mammalian cell line in which the boundaries of the centrosome are defined by the constitutive expression of γ-tubulin–GFP. This feature allows us to use laser microsurgery to selectively destroy the centrosomes in living cells. Here we show that this method can be used to reproducibly ablate the centrosome as a functional entity, and that after destruction the microtubules associated with the ablated centrosome disassemble. Depolymerization–repolymerization experiments reveal that microtubules form in acentrosomal cells randomly within the cytoplasm. When both centrosomes are destroyed during prophase these cells form a functional bipolar spindle. Surprisingly, when just one centrosome is destroyed, bipolar spindles are also formed that contain one centrosomal and one acentrosomal pole. Both the polar regions in these spindles are well focused and contain the nuclear structural protein NuMA. The acentrosomal pole lacks pericentrin, γ-tubulin, and centrioles, however.Conclusions: These results reveal, for the first time, that somatic cells can use a centrosome-independent pathway for spindle formation that is normally masked by the presence of the centrosome. Furthermore, this mechanism is strong enough to drive bipolar spindle assembly even in the presence of a single functional centrosome

    Site determination and thermally assisted tunneling in homogenous nucleation

    Get PDF
    A combined low-temperature scanning tunneling microscopy and density functional theory study on the binding and diffusion of copper monomers, dimers, and trimers adsorbed on Cu(111) is presented. Whereas atoms in trimers are found in fcc sites only, monomers as well as atoms in dimers can occupy the stable fcc as well as the metastable hcp site. In fact the dimer fcc-hcp configuration was found to be only 1.3 meV less favorable with respect to the fcc-fcc configuration. This enables a confined intra-cell dimer motion, which at temperatures below 5 K is dominated by thermally assisted tunneling.Comment: 4 pages, 4 figure
    • 

    corecore