101 research outputs found

    The Mask of Command

    Get PDF

    The Last Lion; Winston Spencer Churchill: Alone, 1932-1940

    Get PDF

    Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus

    Get PDF
    Identifying when past exposure to an infectious disease will protect against newly emerging strains is central to understanding the spread and the severity of epidemics, but the prediction of viral cross-protection remains an important unsolved problem. For foot-and-mouth disease virus (FMDV) research in particular, improved methods for predicting this cross-protection are critical for predicting the severity of outbreaks within endemic settings where multiple serotypes and subtypes commonly co-circulate, as well as for deciding whether appropriate vaccine(s) exist and how much they could mitigate the effects of any outbreak. To identify antigenic relationships and their predictors, we used linear mixed effects models to account for variation in pairwise cross-neutralization titres using only viral sequences and structural data. We identified those substitutions in surface-exposed structural proteins that are correlates of loss of cross-reactivity. These allowed prediction of both the best vaccine match for any single virus and the breadth of coverage of new vaccine candidates from their capsid sequences as effectively as or better than serology. Sub-sequences chosen by the model-building process all contained sites that are known epitopes on other serotypes. Furthermore, for the SAT1 serotype, for which epitopes have never previously been identified, we provide strong evidence - by controlling for phylogenetic structure - for the presence of three epitopes across a panel of viruses and quantify the relative significance of some individual residues in determining cross-neutralization. Identifying and quantifying the importance of sites that predict viral strain cross-reactivity not just for single viruses but across entire serotypes can help in the design of vaccines with better targeting and broader coverage. These techniques can be generalized to any infectious agents where cross-reactivity assays have been carried out. As the parameterization uses pre-existing datasets, this approach quickly and cheaply increases both our understanding of antigenic relationships and our power to control disease

    An International Consensus to Standardize Integration of Histopathology in Ulcerative Colitis Clinical Trials

    Get PDF
    Background & Aims: Histopathology is an emerging treatment target in ulcerative colitis (UC) clinical trials. Our aim was to provide guidance on standardizing biopsy collection protocols, identifying optimal evaluative indices, and defining thresholds for histologic response and remission after treatment. Methods: An international, interdisciplinary expert panel of 19 gastroenterologists and gastrointestinal pathologists was assembled. A modified RAND/University of California, Los Angeles appropriateness methodology was used to address relevant issues. A total of 138 statements were derived from a systematic review of the literature and expert opinion. Each statement was anonymously rated as appropriate, uncertain, or inappropriate using a 9-point scale. Survey results were reviewed and discussed before a second round of voting. Results: Histologic measurements collected using a uniform biopsy strategy are important for assessing disease activity and determining therapeutic efficacy in UC clinical trials. Multiple biopsy strategies were deemed acceptable, including segmental biopsies collected according to the endoscopic appearance. Biopsies should be scored for architectural change, lamina propria chronic inflammation, basal plasmacytosis, lamina propria and epithelial neutrophils, epithelial damage, and erosions/ulcerations. The Geboes score, Robarts Histopathology Index, and Nancy Index were considered appropriate for assessing histologic activity; use of the modified Riley score and Harpaz Index were uncertain. Histologic activity at baseline should be required for enrollment, recognizing this carries operational implications. Achievement of histologic improvement or remission was considered an appropriate and realistic therapeutic target. Current histologic indices require validation for pediatric populations. Conclusions: These recommendations provide a framework for standardized implementation of histopathology in UC trials. Additional work is required to address operational considerations and areas of uncertainty

    Uniparental Genetic Heritage of Belarusians: Encounter of Rare Middle Eastern Matrilineages with a Central European Mitochondrial DNA Pool

    Get PDF
    Ethnic Belarusians make up more than 80% of the nine and half million people inhabiting the Republic of Belarus. Belarusians together with Ukrainians and Russians represent the East Slavic linguistic group, largest both in numbers and territory, inhabiting East Europe alongside Baltic-, Finno-Permic- and Turkic-speaking people. Till date, only a limited number of low resolution genetic studies have been performed on this population. Therefore, with the phylogeographic analysis of 565 Y-chromosomes and 267 mitochondrial DNAs from six well covered geographic sub-regions of Belarus we strove to complement the existing genetic profile of eastern Europeans. Our results reveal that around 80% of the paternal Belarusian gene pool is composed of R1a, I2a and N1c Y-chromosome haplogroups – a profile which is very similar to the two other eastern European populations – Ukrainians and Russians. The maternal Belarusian gene pool encompasses a full range of West Eurasian haplogroups and agrees well with the genetic structure of central-east European populations. Our data attest that latitudinal gradients characterize the variation of the uniparentally transmitted gene pools of modern Belarusians. In particular, the Y-chromosome reflects movements of people in central-east Europe, starting probably as early as the beginning of the Holocene. Furthermore, the matrilineal legacy of Belarusians retains two rare mitochondrial DNA haplogroups, N1a3 and N3, whose phylogeographies were explored in detail after de novo sequencing of 20 and 13 complete mitogenomes, respectively, from all over Eurasia. Our phylogeographic analyses reveal that two mitochondrial DNA lineages, N3 and N1a3, both of Middle Eastern origin, might mark distinct events of matrilineal gene flow to Europe: during the mid-Holocene period and around the Pleistocene-Holocene transition, respectively

    Periodic Active Case Finding for TB: When to Look?

    Get PDF
    OBJECTIVE: To investigate the factors influencing the performance and cost-efficacy of periodic rounds of active case finding (ACF) for TB. METHODS: A mathematical model of TB dynamics and periodic ACF (PACF) in the HIV era, simplified by assuming constant prevalence of latent TB infection, is analyzed for features that control intervention outcome, measured as cases averted and cases found. Explanatory variables include baseline TB incidence, interval between PACF rounds, and different routine and PACF case-detection rates among HIV-infected and uninfected TB cases. FINDINGS: PACF can be cost-saving over a 10 year time frame if the cost-per-round is lower than a threshold proportional to initial incidence and cost-per-case-treated. More cases are averted at higher baseline incidence rates, when more potent PACF strategies are used, intervals between PACF rounds are shorter, and when the ratio of HIV-negative to positive TB cases detected is higher. More costly approaches, e.g. radiographic screening, can be as cost-effective as less costly alternatives if PACF case-detection is higher and/or implementation less frequent. CONCLUSION: Periodic ACF can both improve control and save medium-term health care costs in high TB burden settings. Greater costs of highly effective PACF at frequent (e.g. yearly) intervals may be offset by higher numbers of cases averted in populations with high baseline TB incidence, higher prevalence of HIV-uninfected cases, higher costs per-case-treated, and more effective routine case-detection. Less intensive approaches may still be cost-neutral or cost-saving in populations lacking one or more of these key determinants

    Genetic diversity in the modern horse illustrated from genome-wide SNP data

    Get PDF
    Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection
    • …
    corecore