4 research outputs found

    Cell-type–specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes

    Get PDF
    Most expression quantitative trait locus (eQTL) studies to date have been performed in heterogeneous tissues as opposed to specific cell types. To better understand the cell-type–specific regulatory landscape of human melanocytes, which give rise to melanoma but account for <5% of typical human skin biopsies, we performed an eQTL analysis in primary melanocyte cultures from 106 newborn males. We identified 597,335 cis-eQTL SNPs prior to linkage disequilibrium (LD) pruning and 4997 eGenes (FDR < 0.05). Melanocyte eQTLs differed considerably from those identified in the 44 GTEx tissue types, including skin. Over a third of melanocyte eGenes, including key genes in melanin synthesis pathways, were unique to melanocytes compared to those of GTEx skin tissues or TCGA melanomas. The melanocyte data set also identified trans-eQTLs, including those connecting a pigmentation-associated functional SNP with four genes, likely through cis-regulation of IRF4. Melanocyte eQTLs are enriched in cis-regulatory signatures found in melanocytes as well as in melanoma-associated variants identified through genome-wide association studies. Melanocyte eQTLs also colocalized with melanoma GWAS variants in five known loci. Finally, a transcriptome-wide association study using melanocyte eQTLs uncovered four novel susceptibility loci, where imputed expression levels of five genes (ZFP90, HEBP1, MSC, CBWD1, and RP11-383H13.1) were associated with melanoma at genome-wide significant P-values. Our data highlight the utility of lineage-specific eQTL resources for annotating GWAS findings, and present a robust database for genomic research of melanoma risk and melanocyte biology

    Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human

    No full text
    Different isoenzymes of pyruvate dehydrogenase kinase (PDK) inhibit the mitochondrial pyruvate dehydrogenase complex by phosphorylation of the E1α subunit, thus contributing to the regulation of glucose metabolism. By positional cloning in the 7q21.3-q22.1 region linked with insulin resistance and non-insulin-dependent diabetes mellitus in the Pima Indians, we identified a gene encoding an additional human PDK isoform, as evidenced by its amino acid sequence identity (>65%) with other mammalian PDKs, and confirmed by biochemical analyses of the recombinant protein. We performed detailed comparative analyses of the gene, termed PDK4, in insulin-resistant and insulin-sensitive Pima Indians, and detected five DNA variants with comparable frequencies in both subject groups. Using quantitative reverse transcription polymerase chain reaction, we found that the variants identified in the promoter and 5'-untranslated region did not correlate with differences in mRNA level in skeletal muscle and adipose tissue. We conclude that alterations in PDK4 are unlikely to be the molecular basis underlying the observed linkage at 7q21.3-q22.1 in the Pima Indians. Information about the genomic organization and promoter sequences of PDK4 will be useful in studies of other members of this family of mitochondrial protein kinases that are important for the regulation of glucose metabolism.link_to_OA_fulltex

    Evaluation of Recipients of Positive and Negative Secondary Findings Evaluations in a Hybrid CLIA-Research Sequencing Pilot

    Full text link
    © 2018 While consensus regarding the return of secondary genomic findings in the clinical setting has been reached, debate about such findings in the research setting remains. We developed a hybrid, research-clinical translational genomics process for research exome data coupled with a CLIA-validated secondary findings analysis. Eleven intramural investigators from ten institutes at the National Institutes of Health piloted this process. Nearly 1,200 individuals were sequenced and 14 secondary findings were identified in 18 participants. Positive secondary findings were returned by a genetic counselor following a standardized protocol, including referrals for specialty follow-up care for the secondary finding local to the participants. Interviews were undertaken with 13 participants 4 months after receipt of a positive report. These participants reported minimal psychologic distress within a process to assimilate their results. Of the 13, 9 reported accessing the recommended health care services. A sample of 107 participants who received a negative findings report were surveyed 4 months after receiving it. They demonstrated good understanding of the negative secondary findings result and most expressed reassurance (64%) from that report. However, a notable minority (up to 17%) expressed confusion regarding the distinction of primary from secondary findings. This pilot shows it is feasible to couple CLIA-compliant secondary findings to research sequencing with minimal harms. Participants managed the surprise of a secondary finding with most following recommended follow up, yet some with negative findings conflated secondary and primary findings. Additional work is needed to understand barriers to follow-up care and help participants distinguish secondary from primary findings
    corecore