1,186 research outputs found
A tight-binding model for MoS monolayers
We propose an accurate tight-binding parametrization for the band structure
of MoS monolayers near the main energy gap. We introduce a generic and
straightforward derivation for the band energies equations that could be
employed for other monolayer dichalcogenides. A parametrization that includes
spin-orbit coupling is also provided. The proposed set of model parameters
reproduce both the correct orbital compositions and location of valence and
conductance band in comparison with ab initio calculations. The model gives a
suitable starting point for realistic large-scale atomistic electronic
transport calculations.Comment: 35 pages, 8 figure
SET, A SCENARIO EVALUATOR TOOL FOR SUPPORTING SPACE-EXPLORATION MISSION-ARCHITECTURE DESIGN
The design of space-exploration missions begins with a mission statement that defines the ultimate goals of the mission itself. The mission-architecture defines, instead, how the mission will work in practice, and encompasses all the elements that will take part in it. It includes such issues as the synergies of manned and robotic resources, mission control, and the mission timeline. The mission-architecture design activity is an iterative process in general aimed at the maximization of the cost effectiveness (or value) of the mission and minimization of costs. This is performed by successive comparisons and evaluation of the alternative generated mission architectures. The Scenario Evaluator Tool (SET) is conceived to support the engineering team in the framework of the space mission design process. In particular, SET is a simulation software tool that allows building mission architectures with a significant reduction of development time and computational effort. The software allows the characterization, the comparison, and optimization of exploration scenarios and building blocks through a user friendly graphical interface. Each mission-architecture is characterized and evaluated on the basis of the mass budget of the building blocks, cost index and exploration capabilities. SET is general enough to allow the design of several space exploration scenarios for Gap-analysis studies (flexibility). Further, it allows the users to introduce new model libraries (expandability). This paper describes the main features and the potentialities of the simulation software. To show the working principle of SET, a hypothetical human space-exploration mission scenario has been developed and implemented. The results has been accomplished in the framework of STEPS (Systems and Technologies for the ExPloration of Space), which is a research project co-financed by Piedmont Region (Italy), firms and universities of the Piedmont Aerospace District
Gold and Silver joining technologies in the Moche Tombs “Señor de Sipán” and “Señora de Cao jewelery
About 200 gold and silver funerary ornaments from the Moche tombs “Señor de Sipán” and “Señora de Cao” were analyzed to determine
their metallurgic characteristics. Of particular interest was the question about the gold-silver joining process. To this aim, following
methods were employed, all based on the use of X-rays:
- energy dispersive X-ray fluorescence;
- transmission of monoenergetic fluorescent X-rays;
- radiography.
At least three joining methods were possibly identified:
- of gluing gold and silver sheets;
- of brazing using a proper solder;
- of using a mercury amalgam
From time-series to complex networks: Application to the cerebrovascular flow patterns in atrial fibrillation
A network-based approach is presented to investigate the cerebrovascular flow
patterns during atrial fibrillation (AF) with respect to normal sinus rhythm
(NSR). AF, the most common cardiac arrhythmia with faster and irregular
beating, has been recently and independently associated with the increased risk
of dementia. However, the underlying hemodynamic mechanisms relating the two
pathologies remain mainly undetermined so far; thus the contribution of
modeling and refined statistical tools is valuable. Pressure and flow rate
temporal series in NSR and AF are here evaluated along representative cerebral
sites (from carotid arteries to capillary brain circulation), exploiting
reliable artificially built signals recently obtained from an in silico
approach. The complex network analysis evidences, in a synthetic and original
way, a dramatic signal variation towards the distal/capillary cerebral regions
during AF, which has no counterpart in NSR conditions. At the large artery
level, networks obtained from both AF and NSR hemodynamic signals exhibit
elongated and chained features, which are typical of pseudo-periodic series.
These aspects are almost completely lost towards the microcirculation during
AF, where the networks are topologically more circular and present random-like
characteristics. As a consequence, all the physiological phenomena at
microcerebral level ruled by periodicity - such as regular perfusion, mean
pressure per beat, and average nutrient supply at cellular level - can be
strongly compromised, since the AF hemodynamic signals assume irregular
behaviour and random-like features. Through a powerful approach which is
complementary to the classical statistical tools, the present findings further
strengthen the potential link between AF hemodynamic and cognitive decline.Comment: 12 pages, 10 figure
A Positive-Weight Next-to-Leading-Order Monte Carlo for Z Pair Hadroproduction
We present a first application of a previously published method for the
computation of QCD processes that is accurate at next-to-leading order, and
that can be interfaced consistently to standard shower Monte Carlo programs. We
have considered Z pair production in hadron-hadron collisions, a process whose
complexity is sufficient to test the general applicability of the method. We
have interfaced our result to the HERWIG and PYTHIA shower Monte Carlo
programs. Previous work on next-to-leading order corrections in a shower Monte
Carlo (the MC@NLO program) may involve the generation of events with negative
weights, that are avoided with the present method. We have compared our results
with those obtained with MC@NLO, and found remarkable consistency. Our method
can also be used as a standalone, alternative implementation of QCD
corrections, with the advantage of positivity, improved convergence, and
next-to-leading logarithmic accuracy in the region of small transverse momentum
of the radiated parton.Comment: 33 pages, 10 figure
A methodology for system-of-systems design in support of the engineering team
Space missions have experienced a trend of increasing complexity in the last decades, resulting in the design of very complex systems formed by many elements and sub-elements working together to meet the requirements. In a classical approach, especially in a company environment, the two steps of design-space exploration and optimization are usually performed by experts inferring on major phenomena, making assumptions and doing some trial-and-error runs on the available mathematical models. This is done especially in the very early design phases where most of the costs are locked-in. With the objective of supporting the engineering team and the decision-makers during the design of complex systems, the authors developed a modelling framework for a particular category of complex, coupled space systems called System-of-Systems. Once modelled, the System-of-Systems is solved using a computationally cheap parametric methodology, named the mixed-hypercube approach, based on the utilization of a particular type of fractional factorial design-of-experiments, and analysis of the results via global sensitivity analysis and response surfaces. As an applicative example, a system-of-systems of a hypothetical human space exploration scenario for the support of a manned lunar base is presented. The results demonstrate that using the mixed-hypercube to sample the design space, an optimal solution is reached with a limited computational effort, providing support to the engineering team and decision makers thanks to sensitivity and robustness informa- tion. The analysis of the system-of-systems model that was implemented shows that the logistic support of a human outpost on the Moon for 15 years is still feasible with currently available launcher classes. The results presented in this paper have been obtained in cooperation with Thales Alenia Space—Italy, in the framework of a regional programme called STEP
Mean first passage times of processes driven by white shot noise
The systems driven by white shot noise are analyzed based on mean first passage times. The shot noise has exponentially distributed jump heights. The the linkage between the results and the steady state probability density function of the process are presented
Measuring economic water scarcity in agriculture: a cross-country empirical investigation
High water availability enhances agricultural performance and food security. However, many countries where water is abundant according to hydrological indicators face difficulties in the utilization of water in agriculture, being in a situation of economic water scarcity (EWS), due to lack of institutional and material means for water management and governance. EWS faces a stronger challenge of measurability, if compared to physical water scarcity. Since the Sustainable Development Goal Indicator on Integrated management of domestic and transboundary water resources (IWRM) is a unique attempt to quantify information on water management at a national level, we explore whether it can represent a valid metric for EWS measurement. We first show that a high level of water management is neither necessarily associated to high economic power of the country nor to low physical water availability. Then, we analyze whether the indicator can predict typical EWS situations such as low agricultural productivity and inefficient water use. Although the importance of water institutions for agriculture is well known through case studies at the local level, we make the first attempt to quantify the strengths of this relation at a global scale for different crops in climatic diverse countries. We detect a positive and significant association between IWRM level and yield, and consequently a negative and equally significant association between the IWRM level and the crop water footprint. Statistical significance holds also when potentially confounding variables are included in a multiple regression analysis. We infer from this analysis that good water management, as detectable through the IWRM indicator, improves land productivity and water saving, in turn mitigating EWS. Our findings pave the way toward the use of the IWRM indicator as a valuable tool for measuring EWS in agriculture, bridging the measurability gap of economic water scarcity, with straightforward policy implications in favour of investments in water management as a lever for enhancing food security and development
Bottom Production
We review the prospects for bottom production physics at the LHC.Comment: 74 pages, Latex, 71 figures, to appear in the Report of the ``1999
CERN Workshop on SM physics (and more) at the LHC'', P. Nason, G. Ridolfi, O.
Schneider G.F. Tartarelli, P. Vikas (conveners
- …
