914 research outputs found

    A tight-binding model for MoS2_2 monolayers

    Full text link
    We propose an accurate tight-binding parametrization for the band structure of MoS2_2 monolayers near the main energy gap. We introduce a generic and straightforward derivation for the band energies equations that could be employed for other monolayer dichalcogenides. A parametrization that includes spin-orbit coupling is also provided. The proposed set of model parameters reproduce both the correct orbital compositions and location of valence and conductance band in comparison with ab initio calculations. The model gives a suitable starting point for realistic large-scale atomistic electronic transport calculations.Comment: 35 pages, 8 figure

    First results on the use of a EDXRF scanner for 3D imaging of paintings

    Get PDF
    A 3D map of chemical elements distribution from energy-dispersive X-ray fluorescence (EDXRF) analysis would be a perfect conclusion in a detailed study of any type of artifact. This map can be easily achieved by using synchrotron light as source of radiation, and microoptics both at the source and at the detector. In such a manner a micro-voxel is irradiated and detected, which can be at any depth with respect to the surface of the artifact. This method is effective but needs a high-intensity X-ray source; therefore, its use in archaeometry is limited. An alternative method is proposed in the present paper, which uses a portable EDXRF-device to measure the altered Kα/Kβ or Lα/Lβ-ratios, which allow to locate the chemical elements. Several examples are described

    Measuring economic water scarcity in agriculture: a cross-country empirical investigation

    Get PDF
    High water availability enhances agricultural performance and food security. However, many countries where water is abundant according to hydrological indicators face difficulties in the utilization of water in agriculture, being in a situation of economic water scarcity (EWS), due to lack of institutional and material means for water management and governance. EWS faces a stronger challenge of measurability, if compared to physical water scarcity. Since the Sustainable Development Goal Indicator on Integrated management of domestic and transboundary water resources (IWRM) is a unique attempt to quantify information on water management at a national level, we explore whether it can represent a valid metric for EWS measurement. We first show that a high level of water management is neither necessarily associated to high economic power of the country nor to low physical water availability. Then, we analyze whether the indicator can predict typical EWS situations such as low agricultural productivity and inefficient water use. Although the importance of water institutions for agriculture is well known through case studies at the local level, we make the first attempt to quantify the strengths of this relation at a global scale for different crops in climatic diverse countries. We detect a positive and significant association between IWRM level and yield, and consequently a negative and equally significant association between the IWRM level and the crop water footprint. Statistical significance holds also when potentially confounding variables are included in a multiple regression analysis. We infer from this analysis that good water management, as detectable through the IWRM indicator, improves land productivity and water saving, in turn mitigating EWS. Our findings pave the way toward the use of the IWRM indicator as a valuable tool for measuring EWS in agriculture, bridging the measurability gap of economic water scarcity, with straightforward policy implications in favour of investments in water management as a lever for enhancing food security and development

    Transport–diffusion models with nonlinear boundary conditions and solution by generalized collocation methods

    Get PDF
    AbstractThis paper deals with the derivation of a class of nonlinear transport and diffusion models implemented with nonlinear boundary conditions. Mathematical tools to treat the initial-boundary value problems are developed, based on generalized collocation methods, focused on the treatment of nonlinear boundary conditions in one space dimension. Applications refer to a problem of interest in applied sciences

    Numerical modelling of hot polymer-coated steel pipeline joints in bending

    Get PDF
    A numerical method to analyse the effect of the application of polymer coatings on the bending resistance of steel pipeline joints is presented. Experiments were conducted to investigate the influence of the thickness of polymer field joint coatings and the cooldown time provided after applying the coatings on the behaviour of pipeline joints when being bent during reeling operations. Temperature readings were obtained from thermocouples inside the polymer field joint coating during the application process, and pipeline ovality measurements were taken during mechanical testing. Thermal modelling of the coating application procedure was developed using COMSOL Multiphysics modelling software; this model is validated against the thermocouple readings, while a mechanical model simulating the pipe being bent to a reel developed in Abaqus finite element modelling software is described. The temperature outputs, areas of stress concentration and pipe ovalities obtained from the experiments are shown to be predicted accurately by the numerical models. After successful validation of the numerical models, a parametric study assessing the influence of field joint coating thickness and cooldown times is described, whose results are used to find an optimal solution to reduce the cooldown time required prior to bending the pipe without buckling

    An entropy approach for evaluating the maximum information content achievable by an urban rainfall network

    Get PDF
    Hydrological models are the basis of operational flood-forecasting systems. The accuracy of these models is strongly dependent on the quality and quantity of the input information represented by rainfall height. Finer space-time rainfall resolution results in more accurate hazard forecasting. In this framework, an optimum raingauge network is essential in predicting flood events. This paper develops an entropy-based approach to evaluate the maximum information content achievable by a rainfall network for different sampling time intervals. The procedure is based on the determination of the coefficients of transferred and nontransferred information and on the relative isoinformation contours. The nontransferred information value achieved by the whole network is strictly dependent on the sampling time intervals considered. An empirical curve is defined, to assess the objective of the research: the nontransferred information value is plotted versus the associated sampling time on a semi-log scale. The curve has a linear trend. In this paper, the methodology is applied to the high-density raingauge network of the urban area of Rome

    Gold and Silver joining technologies in the Moche Tombs “Señor de Sipán” and “Señora de Cao jewelery

    Get PDF
    About 200 gold and silver funerary ornaments from the Moche tombs “Señor de Sipán” and “Señora de Cao” were analyzed to determine their metallurgic characteristics. Of particular interest was the question about the gold-silver joining process. To this aim, following methods were employed, all based on the use of X-rays: - energy dispersive X-ray fluorescence; - transmission of monoenergetic fluorescent X-rays; - radiography. At least three joining methods were possibly identified: - of gluing gold and silver sheets; - of brazing using a proper solder; - of using a mercury amalgam

    Rainfall threshold definition using an entropy decision approach and radar data

    Get PDF
    Flash flood events are floods characterised by a very rapid response of basins to storms, often resulting in loss of life and property damage. Due to the specific space-time scale of this type of flood, the lead time available for triggering civil protection measures is typically short. Rainfall threshold values specify the amount of precipitation for a given duration that generates a critical discharge in a given river cross section. If the threshold values are exceeded, it can produce a critical situation in river sites exposed to alluvial risk. It is therefore possible to directly compare the observed or forecasted precipitation with critical reference values, without running online real-time forecasting systems. The focus of this study is the Mignone River basin, located in Central Italy. The critical rainfall threshold values are evaluated by minimising a utility function based on the informative entropy concept and by using a simulation approach based on radar data. The study concludes with a system performance analysis, in terms of correctly issued warnings, false alarms and missed alarms

    Expedite computation of arbitrary-order nonlinear optical properties with native electronic interactions in the time domain

    Full text link
    We adapted a recently proposed time-domain framework to characterize the optical response of interacting electronic systems in order to expedite its computation without compromise in quantitative or qualitative accuracy at the microscopic level. With reliable parameterizations of Hamiltonians and interactions, our formulation allows for increased economy and flexibility in calculating the optical response functions to fields of arbitrary temporal shape and strength. For example, the computation of high-harmonic susceptibilities to arbitrary order becomes straightforward within a unified scheme that natively takes into account excitonic effects, as well as deviations of the electronic system from equilibrium under a strong field. Given that two-dimensional semiconductors are currently of much interest for their strong optical nonlinearities, largely defined by excitons, we demonstrate the approach by computing the frequency-dependent susceptibilities of monolayer MoS2_2 and hexagonal boron nitride up to the third-harmonic. In the latter, a two-band model brings further insight on the role of intra-band transitions and the nonequilibrium state of the system when computing even-order response, like the second-harmonic susceptibility. Being grounded on a generic non-equilibrium many-body perturbation theory, this framework allows extensions to handle more generic interaction models or the realistic description of electronic processes taking place at ultrafast time scales.Comment: 20 pages, 9 figure

    International corporations trading Brazilian soy are keystone actors for water stewardship

    Get PDF
    Transnational corporations play a major, but poorly constrained, role in reallocating global water resources. Here, we couple high-resolution, company-specific trade data with hydrological and crop models to estimate the virtual water trade of the top 9 transnational corporations that trade Brazilian soy. We identify 4429 virtual water flows connecting 1620 Brazilian municipalities with the top-10 soy importing countries and find that the total virtual water flow increased from 43 billion m3 to 100 billion m3 between 2004 and 2018. We find that the largest soy traders displace on average twice as much virtual water as top-importing countries, excluding China. For example, in 2018 one transnational corporation exported 15 Gm3, almost tripling the Netherlands’s virtual water import (the second largest importer at about 5 Gm3). Our findings highlight the importance of transnational corporations for achieving water stewardship and sustainable supply chains to support water resource security at municipal and international scales
    • …
    corecore