38 research outputs found

    Tracking Holocene palaeostratification and productivity changes in the Western Irish Sea: A multi-proxy record

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The Western Irish Sea preserves an exceptionally thick (ca. 40 m) Holocene succession that is ideally suited to understanding the pattern of palaeostratification and water mass productivity changes in the region, and their relationship with sea level, sedimentation, and biota. Additionally, the presence of shallow-buried methane provides an opportunity to explore its potential impact on the local pattern of Holocene marine environmental change. Multi-proxy investigation of a cored borehole succession through the Holocene interval tracks changes from mixed to seasonally stratified conditions. In the earliest Holocene (11.2–10 ka), high productivity, mixed water conditions prevailed, with abundant and diverse foraminifera and dominant heterotrophic dinoflagellate cysts. Productivity was probably driven by high nutrient fluxes related to high rates of sedimentation (>1600 cm/kyr), in turn influenced by relatively low sea level and restricted sediment accommodation space across shelf areas to the east of the borehole site (eastern Irish Sea Basin). With rising sea level in the later part of the Early Holocene, the region evolved into a relatively lower productivity mixed water mass system, with significant changes in ecology revealed by dinoflagellate cysts and foraminifera. In the latest Early Holocene and earliest Mid Holocene (ca. 8.4–8.2 ka) a return to higher productivity is signalled by dinoflagellate cyst data; a result of seasonal stratification becoming established, evidenced by sharply increased summer sea surface temperature estimates (typically 16–17 °C) that contrast with an opposite (more positive) trend in δ18O values for benthic foraminifera. Reductions in turbulent mixing associated with stratification might have exacerbated the palaeoecological impact of shallow-buried methane associated with the borehole site, potentially evidenced by a significant change in dominant benthic foraminifera and strong, localised excursions in the benthic δ13C/δ18O record

    Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are described as the main reef framework builders, often associated with crustose coralline algae. We used underwater cores to investigate Late Holocene reef growth and characterise the main framework builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef, our results show a complex framework building system dominated by bryozoans. Bryozoans were major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively. Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs. Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’ dominance over photoautotrophs and mixotrophs, we propose that a combination of historical factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/Ciências do Mar, and ANP/Brasoil for long term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation International for providing and authorizing the use of the IKONOS image. JMW and JCB are International Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. Zá Cajueiro provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling operations. This is a contribution from the Rede Abrolhos (abrolhos.org)

    Prokaryotic and Eukaryotic Community Structure in Field and Cultured Microbialites from the Alkaline Lake Alchichica (Mexico)

    Get PDF
    The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0–14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples, possibly due to more stable and favorable laboratory conditions. The maintenance of highly diverse natural microbialites in laboratory aquaria holds promise to study the role of different metabolisms in the formation of these structures under controlled conditions

    A case of mycotic infrarenal abdominal aortic aneurysm after bacillus Calmette-Guérin immunotherapy for bladder cancer and a review of the literature

    No full text
    A 69-year-old patient presented with a 9-month history of constitutional symptoms and a 3-week history of increasing abdominal and back pain. He had a history of bacillus Calmette-Guérin immunotherapy for bladder cancer 9 months earlier. An infrarenal mycotic aneurysm was detected by positron emission tomography-computed tomography. His abdominal aorta was reconstructed using a tube graft tailored from a bovine pericardium sheet. We chose this graft because of its acellular nature and reduced risk of postoperative infection. The culture from the aortic wall yielded acid fast bacilli, and he was treated with antituberculosis medication. His postoperative recovery was uneventful, except for chylous ascites

    Effect of curing water availability and composition on cement hydration

    Get PDF
    Curing can help concrete reach its full strength and durability potential. The effect of sealing the concrete with plastic or formwork, use of a liquid curing compound, wet curing, and internal curing with saturated lightweight aggregates on the cement degree of hydration (DOH) development with time was examined using isothermal calorimetry. Curing water amount, curing water ionic concentration, and sample thickness were varied. Finally, curing application timing was studied by comparing strength development of concrete cylinders sealed, placed in a moist room after 24 hours sealed, and immersed in a water bath immediately after finishing. Increasing the height of curing water decreased the height of heat of hydration rate peaks. Curing water ionic concentration affected the setting time and heat of hydration rate peak heights. Strength results show delayed curing can result in significant strength loss because of the difficulty for water to penetrate the already-hardened concrete

    Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change

    Get PDF
    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO2 availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO2 (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO2 and temperature are leading to increased CO2 and HCO3- and decreased CO32- and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO2 affinity, while increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO2 affinity, decreased iron availability increases CO2 affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions among the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity
    corecore