57 research outputs found

    ARE ROMANIAN UNIVERSITIES PREPARING LEADERS IN ACCOUNTING?

    Get PDF
    In 2005, the Report on the Results of the Global Accounting Education Benchmarking Pilot Project, prepared by Phelps and Karreman, found that higher education institutions were not providing the leadership role necessary to close gaps in accounting educat: accounting education, leadership in accounting, GAEB Report, accounting curricula

    The Role of the PGC1α Gly482Ser Polymorphism in Weight Gain due to Intensive Diabetes Therapy

    Get PDF
    The Diabetes Control and Complications Trial (DCCT) involved intensive diabetes therapy of subjects with type 1 diabetes mellitus (T1DM) for an average period of 6.5 years. A subset of these subjects gained excessive weight. We tested for association of polymorphisms in 8 candidate genes with the above trait. We found the Gly482Ser polymorphism in the peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) to be significantly associated with weight gain in males (P = .0045) but not in females. The Ser allele was associated with greater weight gain than the Gly allele (P = .005). Subjects with a family history of type 2 diabetes mellitus (T2DM) were more common among those who gained excessive weight. We conclude that T2DM and the Gly482Ser polymorphism in PGC1α contribute to the effect of intensive diabetes therapy on weight gain in males with T1DM

    Cell surface engineering of renal cell carcinoma with glycosylphosphatidylinositol-anchored TIMP-1 blocks TGF-beta 1 activation and reduces regulatory ID gene expression

    Get PDF
    Tissue inhibitor of metalloproteinase 1 (TIMP-1) controls matrix metalloproteinase activity through 1:1 stoichiometric binding. Human TIMP-1 fused to a glycosylphosphatidylinositol (GPI) anchor (TIMP-1-GPI) shifts the activity of TIMP-1 from the extracellular matrix to the cell surface. TIMP-1-GPI treated renal cell carcinoma cells show increased apoptosis and reduced proliferation. Transcriptomic profiling and regulatory pathway mapping were used to identify the potential mechanisms driving these effects. Significant changes in the DNA binding inhibitors, TGF-beta 1/SMAD and BMP pathways resulted from TIMP-1-GPI treatment. These events were linked to reduced TGF-beta 1 signaling mediated by inhibition of proteolytic processing of latent TGF-beta 1 by TIMP-1-GPI

    Deciphering the number and location of active sites in the monomeric glyoxalase I of Zea mays

    Get PDF
    Detoxification of methylglyoxal, a toxic by-product of central sugar metabolism, is a major issue for all forms of life. The glyoxalase pathway evolved to effectively convert methylglyoxal into d-lactate via a glutathione hemithioacetal intermediate. Recently, we have shown that the monomeric glyoxalase I from maize exhibits a symmetric fold with two cavities, potentially harboring two active sites, in analogy with homodimeric enzyme surrogates. Here we confirm that only one of the two cavities exhibits glyoxalase I activity and show that it adopts a tunnel-shaped structure upon substrate binding. Such conformational change gives rise to independent binding sites for glutathione and methylglyoxal in the same active site, with important implications for the molecular reaction mechanism, which has been a matter of debate for several decades. Database: Structural data are available in The Protein Data Bank database under the accession numbers 6BNN, 6BNX, and 6BNZ.Fil: Gonzalez, Javier Marcelo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Agostini, Romina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Alvarez, Clarisa Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Klinke, Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Andreo, Carlos Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Campos Bermudez, Valeria Alina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; Argentin

    Cumulative contents vol. 1266

    Get PDF

    Communication

    Get PDF
    Visualizing the functional interactions of biomolecules such as proteins and nucleic acids is key to understanding cellular life on the molecular scale. Spatial proximity is often used as a proxy for the direct interaction of biomolecules. However, current techniques to visualize spatial proximity are either limited by spatial resolution, dynamic range, or lack of single-molecule sensitivity. Here, we introduce Proximity-PAINT (pPAINT), a variation of the super-resolution microscopy technique DNA-PAINT. pPAINT uses a split-docking-site configuration to detect spatial proximity with high sensitivity, low false-positive rates, and tunable detection distances. We benchmark and optimize pPAINT using designer DNA nanostructures and demonstrate its cellular applicability by visualizing the spatial proximity of alpha- and beta-tubulin in microtubules using super-resolution detection. © 2020 Wiley-VCH GmbH

    Analysis of close associations of uropod-associated proteins in human T-cells using the proximity ligation assay

    Get PDF
    We have shown previously that the raft-associated proteins flotillin-1 and -2 are rapidly recruited to the uropods of chemoattractant-stimulated human neutrophils and T-cells and are involved in cell polarization. Other proteins such as the adhesion receptor PSGL-1, the actin-membrane linker proteins ezrin/radixin/moesin (ERM) and the signaling enzyme phosphatidylinositol-4-phosphate 5-kinase type Iγ90 (PIPKIγ90) also accumulate in the T-cell uropod. Using the in situ proximity ligation assay (PLA) we now have investigated putative close associations of these proteins in human freshly isolated T-cells before and after chemokine addition. The PLA allows in situ subcellular localization of close proximity of endogenous proteins at single-molecule resolution in fixed cells. It allows detection also of weaker and transient complexes that would not be revealed with co-immunoprecipitation approaches. We previously provided evidence for heterodimer formation of tagged flotillin-1 and -2 in T-cells before and after chemokine addition using fluorescence resonance energy transfer (FRET). We now confirm these findings using PLA for the endogenous flotillins in fixed human T-cells. Moreover, in agreement with the literature, our PLA findings confirm a close association of endogenous PSGL-1 and ERM proteins both in resting and chemokine-activated human T-cells. In addition, we provide novel evidence using the PLA for close associations of endogenous activated ERM proteins with PIPKIγ90 and of endogenous flotillins with PSGL-1 in human T-cells, before and after chemokine addition. Our findings suggest that preformed clusters of these proteins coalesce in the uropod upon cell stimulation

    Phytoestrogens Enhance the Vascular Actions of the Endocannabinoid Anandamide in Mesenteric Beds of Female Rats

    Get PDF
    In rat isolated mesenteric beds that were contracted with NA as an in vitro model of the vascular adrenergic hyperactivity that usually precedes the onset of primary hypertension, the oral administration (3 daily doses) of either 10 mg/kg genistein or 20 mg/kg daidzein potentiated the anandamide-induced reduction of contractility to NA in female but not in male rats. Oral treatment with phytoestrogens also restored the vascular effects of anandamide as well as the mesenteric content of calcitonin gene-related peptide (CGRP) that were reduced after ovariectomy. The enhancement of anandamide effects caused by phytoestrogens was prevented by the concomitant administration of the estrogen receptor antagonist fulvestrant (2.5 mg/kg, s.c., 3 daily doses). It is concluded that, in the vasculature of female rats, phytoestrogens produced an estrogen-receptor-dependent enhancement of the anandamide-vascular actions that involves the modulation of CGRP levels and appears to be relevant whenever an adrenergic hyperactivity occurs
    corecore