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  Cell surface engineering of renal cell carcinoma 
with glycosylphosphatidylinositol-anchored 
TIMP-1 blocks TGF- β 1 activation and reduces 
regulatory ID gene expression  

   Abstract:   Tissue inhibitor of metalloproteinase 1 (TIMP-

1) controls matrix metalloproteinase activity through 1:1 

stoichiometric binding. Human TIMP-1 fused to a glyco-

sylphosphatidylinositol (GPI) anchor (TIMP-1 - GPI) shifts 

the activity of TIMP-1 from the extracellular matrix to 

the cell surface. TIMP-1 - GPI treated renal cell carcinoma 

cells show increased apoptosis and reduced proliferation. 

Transcriptomic profiling and regulatory pathway mapping 

were used to identify the potential mechanisms driving 

these effects. Significant changes in the DNA binding 

inhibitors, TGF- β 1/SMAD and BMP pathways resulted 

from TIMP-1 - GPI treatment. These events were linked to 

reduced TGF- β 1 signaling mediated by inhibition of pro-

teolytic processing of latent TGF- β 1 by TIMP-1 - GPI.  
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       Renal cell carcinoma (RCC) represents approximately 2 %  

of all malignancies (Lipworth et al. , 2006 ; Siegel et al. , 

2011 ). Prognosis is generally poor as the tumor is usually 

in late stage, with infiltration of surrounding tissue and 

dissemination of metastasis when symptoms occur (Koul 

et al. , 2011 ; Siegel et al. , 2011 ). Patients with RCC are gen-

erally treated with surgery, as these tumors are largely 

resistant to radiochemotherapy. 

 Matrix metalloproteinases (MMPs) are zinc-depend-

ent endopeptidases that degrade the extracellular matrix 

(ECM) and play important roles in tumor progression and 

metastasis (Kessenbrock et al. , 2010 ). Levels of MMP-1, -2, 

-3, -9, -14, -15 and -16 are elevated in RCC, which is thought 

to promote a more optimal microenvironment for tumor 

growth and the spread of metastasis (Catania et al. , 2007 ). 

 Tissue inhibitors of metalloproteinases (TIMPs) are 

soluble proteins of the ECM that act as endogenous inhibi-

tors of MMPs. TIMPs suppress MMP proteinase function 

in a 1:1 stoichiometric binding. The TIMP-family contains 

four members: TIMP-1, -2, -3 and -4. In RCC, the ratio of 

MMPs to TIMPs is increased in favor of MMPs (Hagemann 

et al. , 2001 ; Catania et al. , 2007 ; Moore and Crocker, 

 2012 ). TIMP-1 can have diverse effects on tumor growth, 

including MMP-dependent growth-promoting and MMP 

independent effects. The MMP-dependent activities are 

mediated through the N-terminal protein domain, which 

directly blocks MMP activity; while the MMP-independent 

activities are thought to be mediated through the C-termi-

nal hemopexin-binding domain (Stetler -Stevenson, 2008 ; 

Moore and Crocker , 2012 ). The net effects of TIMP-1 on 
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tumor biology is complex and is dependent on the con-

centration of protein tested and the tumor subtype studied 

(Stetler -Stevenson, 2008 ). 

  A recombinant protein has been developed that fuses 

human TIMP-1 to a glycosylphosphatidylinositol (GPI) 

anchor (TIMP-1 - GPI). This modification effectively shifts the 

functional activity of TIMP-1 from the ECM directly on to the 

cell surface and alters proteolytic dynamics at the cell mem-

brane (Figure  1  A). Previous work has shown that TIMP-1 - GPI 

treatment can result in enhanced biological effects (Djafar-

zadeh et al. , 2004, 2006 , 2012; Raggi et  al. , 2009 ). These 

include changes in cellular proliferation (Djafarzadeh et 

al. , 2004, 2006, 2012 ), and in the case of RCC an increased 

sensitivity to Fas-mediated apoptosis, reduced prolifera-

tion, migration and capacity for invasion (Djafarzadeh et 

al. , 2006 ). These effects could not be explained by changes 

in ECM turnover alone, but suggested additional effects on 

key regulatory networks controlling cell growth and cel-

lular homeostasis. Transcriptomic profiling and pathway 

mapping were applied here to identify the potential down-

stream effects of TIMP-1-  GPI treatment on RCC biology. 

 Recombinant TIMP-1 - GPI was shown to be efficiently 

incorporated into the cell membrane of the RCC cell line 

RCC53 (Djafarzadeh et al. , 2006 ). Treatment of RCC53 with 

14 ng/ml of TIMP-1 - GPI led to a strong surface signal for 

TIMP-1, as detected by fluorescence-activated cell sorting 

(FACS) using a human TIMP-1-specific antibody (Figure 1A). 

TIMP-1 - GPI has previously been shown to enhance the asso-

ciation of MMPs on the surface of treated cells (Djafarzadeh 

et al. , 2004, 2006 ). RCC cells treated with vehicle, 14 ng/ml 

rhTIMP-1 or 14 ng/ml TIMP-1 - GPI, and stained with specific 

antibodies to MMP-1, MMP-2, MMP-7 and MMP-9 showed 

increased surface expression of MMP-1, MMP-2, MMP-7 and 

MMP-9 proteins by FACS (Figure 1A). Gelatinase zymography 

further validated a dose-dependent inhibition of MMP-2 and 

-9 secretion into the growth media of cells after treatment 

with TIMP-1 - GPI, but not to equivalent levels of rhTIMP-1. To 

verify the presence of the GPI anchor, after 1 h, TIMP-1-  GPI-

treated cells were subjected to phospholipase C digestion 

(60 ng/ml), which cleaves GPI anchors from surface pro-

teins. Phospholipase C treatment resulted in re-secretion of 

MMP-2 and MMP-9 into the growth media (Figure 1B). 

 The direct effects of TIMP-1 - GPI treatment on the prolif-

eration of RCC cells were verified using MTT [3-(4,5-dimeth-

ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. 

RCC53 cells showed a dose-dependent suppression of 

TIMP-1 - GPI proliferation (with a maximum at 14 ng/ml) at 

12, 48 and 72 h (Figure 1D). TIMP-1 - GPI effects on cell apo-

ptosis were seen in RCC53 cells using flow cytometry and 

annexin V-specific antibodies. Cells treated with 15 %  FCS, 

vehicle, 14 ng/ml rhTIMP-1 or 12 ng/ml TIMP-1 - GPI were 

stained with annexin V fluorescein isothiocyanate (FITC) 

and 7-amino-actinomycin D (7-AAD) (Koopman et al. , 

1994 ). Treatment with 12  ng/ml TIMP-1 - GPI resulted in a 

strong annexin V signal shift showing a two-fold increase 

in apoptotic cells demonstrating enhanced apoptosis in 

the treated cells (Figure 1C), while rhTIMP-1 treatment 

showed only a slight increase in apoptosis. 

 The molecular basis for effects linked to apoptosis and 

proliferation (cell cycle) were then analyzed using tran-

scriptomic profiling and regulatory pathway mapping. 

RCC53 cells were treated with vehicle, 14 ng/ml rhTIMP-1, 

7 ng/ml or 14 ng/ml TIMP-1 - GPI. RNA was extracted after 

48 h and was hybridized to DNA microarrays (Affymetrix 

Human Genome Chip HG U133 Plus2). 

 Robust multi-array analysis (RMA) and Genomatix Chip-

inspector, which use two different statistical approaches, 

were used to analyze the resultant CEL-files. The data were 

then further characterized using bioinformatics-based tools 

to identify pathways that were significantly influenced 

by TIMP-1 - GPI treatment. The two independent methods 

applied make use of different databases and statistical 

methods to analyze the CEL-files (Mootha et al. , 2003 ; Sub-

ramanian et al. , 2005 ; Cohen et al. , 2008 ) (Tables  1   and  2  ). 

 The results of the gene set enrichment analysis 

(GSEA) and Genomatix Pathway System (GePS) analy-

ses were compared. Each output ranked the pathways 

showing the strongest, or most pronounced, level of 

regulation between the samples tested. Interestingly, 

both independent methods identified an overlapping set 

of regulatory pathways representing the highest ranked 

output (Tables 1 and 2). The GePS-based analysis, which 

incorporated both up- and down-regulated genes in the 

ranking, identified the inhibitor of DNA binding (ID), 

bone morphogenic protein (BMP), SMAD, transforming 

growth factor beta (TGF- β ) and cell cycle-related path-

ways as being the most strongly regulated (Table 1). 

GSEA analysis ranks the up- and down-regulated sets 

of genes independently. The highest ranked down-regu-

lated pathways were the BMP, TGF- β  and ID pathways. 

The highest ranked up-regulated genes/pathways in the 

GSEA analysis were cholesterol biosynthesis, and path-

ways linked to tRNA biosynthesis (Table 2). Based on the 

two methods, the TGF- β 1, BMP and DNA-binding protein 

inhibitor-associated pathways showed the highest asso-

ciation with TIMP-1 - GPI-treated RCC cells (Tables 1 and 

2 and Figure  2  ). The ID genes were integrated in, or 

associated with, the SMAD, TGF- β  and cell cycle path-

ways identified and may thus be important downstream 

factors that are moderated through TIMP-1 - GPI treat-

ment (Tables 1 and 2). The TGF- β 1, BMP and ID-associ-

ated pathways were not found to be significantly altered 
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 Figure 1    TIMP-1 - GPI is reincorporated into the surface membranes of renal cell carcinoma (RCC) cells and modulates MMP surface expres-

sion, cellular proliferation and apoptosis. 

 (A) The RCC53 cell line was cultured as previously described (Djafarzadeh et al. , 2006 ) and recombinant TIMP-1 - GPI generated as detailed 

(Djafarzadeh et al. , 2004 ). RCC53 cells were incubated with 14 ng/ml protein TIMP-1-  GPI, rhTIMP-1 or vehicle control in serum-free RPMI 1604 

medium for 2 h at 37 ° C. The cells were washed once with 1  ×   phosphate buffered saline (PBS), and FCS free medium was added. The cells 

were incubated overnight at 37 ° C and in 5 %  CO 
2
 . Cell detachment was performed using Biotase (Biochrom AG, Berlin, Germany) in 1× PBS. 

Cells were incubated for 60 min on ice with specific antibodies: TIMP-1 (IM32), MMP-1 (IM35), MMP-2 (IM33), MMP-9 (IM61) (Calbiochem, 

Darmstadt, Germany), MMP-7 (MS 813) (Labvision, Kalamazoo, MI, USA), and IgG1 or IgG2b isoantibodies (M9269 and M8894; Sigma Aldrich, 

Taufkirchen, Germany). Cells were washed with 1  ×   PBS and incubated on ice for 45 min with anti-mIgG-FITC secondary antibody (Dako AS, 

Glostrup, Denmark). Cells were then washed two times with 1  ×   PBS and analyzed by flow cytometry (FACSCalibur, Becton Dickinson and 

Company, San Jose, CA, USA). Grey histograms represent isotype controls and solid-line histograms represent respective antibody stainings. 

(B) Binding of annexin V-fluoroisothiocyanate (FITC, FL1) and 7-AAD (FL3) was used to detect TIMP-1-GPI-mediated changes in viable, early 

and late apoptosis by flow cytometry (Koopman et al.,  1994 ). Cells were incubated with 14 ng/ml protein TIMP1-GPI, rhTIMP1 or vehicle in 

serum free RPMI 1604 medium for 2 h at 37 ° C and 5 %  CO
2
. Cells in 15 %  FCS medium were used as controls. Detachment was performed with 

Biotase (Biochrom AG, Berlin, Germany). Cells were washed in 1  ×   PBS and dispensed in 300  μ l Annexin binding buffer (BD Pharmingen, San 

Diego, CA, USA). Cells were incubated for 10 min at room temperature in the dark with annexin V FITC (BD Pharmingen, San Diego, CA, USA) 

and 7-AAD (Sigma-Aldrich, Taufkirchen, Germany; No A9400) antibodies and analyzed by FACS (see above). (C) Gelatinase zymography (Klier 

et al. , 2001 ) showed reduced secretion of MMP-2 and MMP-9 with increasing levels of TIMP-1 - GPI. Control phospholipase C digestion (60 ng/ml) 

led to re-secretion of the two gelatinase enzymes (Sigma-Aldrich, Taufkirchen, Germany; No. 661-9). (D) Renal cell carcinoma cells were 

treated with increasing amounts of TIMP-1-GPI (2, 4, 6, 8, 10, 12 and 14 ng/ml) and MTT assays were used to measure cellular proliferation 

over a 3-day period (Djafarzadeh et al. , 2006 ). TIMP-1 - GPI led to a reduction in cancer cell proliferation at 24, 48 and 72 h. Control rhTIMP-1 at 

14 ng/ml, or vehicle did not influence proliferation.  * Mann-Whitney  U -test was used to compare the untreated, vehicle and rhTIMP-1 protein 

controls, to the TIMP-1-GPI-treated samples; a (one-tailed)  p -value of 0.0083 was obtained for the 24-, 48- and 72-h data points.    
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in the rhTIMP-1-treated RCC cells where nuclear factor 

kappa-light-chain-enhancer of activated B cells, epider-

mal growth factor receptor 1, mitogen-activated protein 

kinase and interleukin-5 pathways ranked highest. Thus, 

the most pronounced pathways identified with TIMP-1 -

 GPI treatment were different to those seen with rhTIMP-1 

protein, suggesting unique biology associated with 

TIMP-1 - GPI (Table 1). 

 The ID proteins are helix-loop-helix transcription 

factors thought to underlie the biology of cell cycle and 

apoptosis  –  processes strongly associated with TIMP-1 - GPI 

treatment (Figure 1). The ID family contains four members: 

ID1, -2, -3 and -4 (Benezra et al. , 1990 ; Zebedee and Hara , 

2001 ; Perk et al. , 2005 ; Kee , 2009 ). TaqMan reverse tran-

scriptase polymerase chain reaction verified that all four 

ID genes were down-regulated at the steady state mRNA 

level in TIMP-1 - GPI-treated RCC53 cells, but this was not 

seen with vehicle or rhTIMP-1 treatment (Figure  3  A). The 

modulation of ID expression following TIMP-1 - GPI treat-

ment may help explain many of the effects observed. 

  Canonical pathway  p -Value Genes (observed)

GePS analysis of vehicle vs. 7 ng/ml TIMP-1 – GPI

   ID 3.57E-04  ID4 ,  ID2 ,  ID3 ,  RB1 ,  ID1 

   BMP receptor signaling 3.76E-03  SMAD5 ,  PPM1A ,  SMAD9 ,  SMAD7 ,  BMPR2 

    Mothers against DPP homolog / SMAD family 

member 1

2.77E-03  SMAD5 ,  HAS2 ,  TGFBR3 ,  PPM1A ,  SMAD9 ,  THBS1 ,  ID2 ,  ID3 , 

 SMAD7 ,  ID1 ,  ERBB2IP ,  RXFP1 ,  BMPR2 ,  TWSG1 

   TGF- β 3.51E-03  ID4 ,  SMAD5 ,  HAS2 ,  TGFBR3 ,  PPM1A ,  SMAD9 ,  THBS1 , 

 MYO10 ,  VCAN ,  ARL13B ,  ID2 ,  ID3 ,  FSTL1 ,  SMAD7 ,  ID1 , 

 ERBB2IP ,  SYNJ2BP ,  BMPR2 ,  GDF15 ,  TWSG1 

   Cell cycle 3.34E-05  NBN ,  MOBKL1B ,  CUX1 ,  CAV2 ,  SAT1 ,  PRKAR1A ,  ID2 ,  ID3 , 

 ATRX ,  KRT10 ,  ZBTB7A ,  RB1 ,  ATR ,  CCNE2 ,  ID1 ,  ZBTB2 , 

 MCM10 ,  CDT1 ,  OTX2 ,  FBXO5 

GePS analysis of vehicle vs. 14 ng/ml TIMP-1 – GPI

   ID 1.27E-05  ID4 ,  ID1 ,  TCF3 ,  ID2 ,  ID3 ,  PAX8 

    Mothers against DPP homolog / SMAD family 

member 1

1.66E-03  SMAD5 ,  HAS2 ,  SMAD9 ,  THBS1 ,  SFTPB ,  ID1 ,  ERBB2IP ,  RXFP1 , 

 ID2 ,  ID3 ,  TRIB3 ,  TWSG1 

   TGF- β 6.00E-03  ID1 ,  ID2 ,  ID4 ,  HAS2 ,  SFTPB ,  SMAD9 ,  ID3 ,  PAX8 

   Cell cycle 9.37E-04  NBN ,  OGT ,  CCNE2 ,  ID1 ,  PRKAR1A ,  MCM10 ,  CDT1 ,  TCF3 ,  ID2 , 

 FBXO5 ,  SKP2 ,  ID3 ,  CASP7 ,  IREB2 

GePS analysis of 14 ng rhTIMP-1 vs. 14 ng/ml TIMP-1 – GPI

   ID 2.24E-04  ID1 ,  ID4 ,  ID2 ,  ID3 

    Mothers against DPP homolog / SMAD family 

member 1

5.07E-03  ID1 ,  HAS2 ,  ID2 ,  TGFB2 ,  SMAD6 ,  TRIB3 ,  ID3 

   TGF- β 2.50E-03  ID1 ,  ID2 ,  ID4 ,  HAS2 ,  SMAD6 ,  ID3 ,  TRIB3 

   Cell cycle 4.33E-03  CCNE2 ,  ID1 ,  ID2 ,  ID3 

   Proliferation 4.61E-03  ID1 ,  ID2 ,  FGFR3 ,  ERBB3 ,  RHOB ,  CD74 

GePS analysis of vehicle vs. 14 ng rhTIMP-1

    Canonical nuclear factor kappa-light-chain-enhancer 

of activated B cell pathway

4.63E-03  CYLD ,  RIPK2 ,  ATM 

   Epidermal growth factor receptor 1 5.05E-03  MAP3K2 ,  SH3BGRL ,  APPL1 ,  STAT1 ,  PRKAR1A ,  CREB1 , 

 MAP2K7 

    Mitogen-activated protein (MAP) kinase signaling 

pathway

7.02E-03  MAP3K2 ,  STAT1 ,  CREB1 ,  MAP2K7 

   Interleukin-5 signaling pathway 9.55E-03  IL5RA ,  STAT1 

 Table 1      Responses of RCC53 cells to vehicle, 14 ng/ml rhTIMP-1, 7 or 14 ng/ml TIMP-1 - GPI.   

   After 48 h RNA was extracted using PureLink ™  RNA Mini Kit (Invitrogen, Carlsbad, CA, USA) and the RNA concentration measured using a 

RNA Quant Kit (Invitrogen, Carlsbad, CA, USA). Twelve DNA microarrays (Affymetrix Human Genome Chip HG U133 Plus2) were hybridized 

with three replicates of each probe (vehicle, 14 ng/ml rhTIMP-1, 7 ng/ml TIMP-1 - GPI, 14 ng/ml TIMP-1 - GPI). For each chip, CEL-files with the 

measured intensities were calculated. All CEL-files underwent quality control with MADMAX Affymetrix Quality Control Pipeline (Univer-

sity of Wageningen, The Netherlands). The CEL-files were then analyzed using the Genomatix Chipinspector ’ s (Genomatix GmbH, Munich, 

Germany) single-probe approach, which yielded an enriched gene list (FDR 0 % ). This list was then analyzed using Genomatix Pathway 

Analysis Software, which sorts genes to individual biological pathways while assigning  p -values based on the differentially expressed 

genes. The pathways then underwent nonbiased ranking based on the level of regulation detected. The pathways are presented as ranked 

by the software using the parameters defined above. Genes in bold were down-regulated and genes underlined were up-regulated.   
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 High ID protein expression is found in diverse 

tumors including those of the prostate (Ouyang et al. , 

2002 ), breast (Schoppmann et al. , 2003 ), colon (Wilson 

et al. , 2001 ), brain (Vandeputte et al. , 2002 ) and kidney 

(Li et al. , 2007 ). The basic helix-loop-helix class of tran-

scription factors is the target of the ID proteins (Benezra 

et al. , 1990 ; Kee , 2009 ). The IDs strongly inhibit cell 

differentiation and apoptosis and enhance cell prolif-

eration through their direct binding to these impor-

tant transcription factors (Benezra et al. , 1990 ; Kee , 

2009 ). The down-regulation of IDs in tumors results in 

increased sensitivity to apoptosis and the suppression of 

  Canonical pathway (Geneset) Nominal  p -Value Genes

GSEA: Down-regulated (vehicle vs. 14 ng/ml TIMP-1 – GPI)

   Signaling by BMP 0.000 BMPR1A, UBE2D1, SMAD9, NOG, SMAD7, ZFYVE16, SMAD6, SMAD4, ACNR2A, 

SKI, SMAD5, SMURF2, UBE2D3, SMAD1, ACVR2B, BMP2

   TGF- β  signaling pathway 0.000 ID2, ID4, ID3, ID1, PITX2, BMPR1A, SMAD9, EP300, NOG, SMAD7, ZFYVE16, 

TGFB2, SMAD6, TGFBR1, AVCR1, ROCK1, IFNG, BMP8B, SMAD4

   ID pathway 0.003 ID2, ID4, ID3, ID1, TCF12, RB1, MYOG, MYOD1, CCNA2, TCF3

GSEA: Up-regulated (vehicle vs. 14 ng/ml TIMP-1 – GPI)

   Cholesterol biosynthesis 0.000 IDI2, CYP51A1, GGPS1, LBR, SC4MOL, SC5DL, HMGCS1, NSDHL, HMGCR, EBP

   Cytosolic TRNA aminoacylation 0.000 AIMP, EEF1E1, LARS, RARS, DARS, KARS, AIMP2, IARS, NARS, TARS, FARSB, HARS

   Aminoacyl TRNA biosynthesis 0.000 LARS2, MARS2, YARS2, AARS2, MTFMT, LARS, PSTK, RARS2, IARS2, TARSL2, 

RARS, DARS

 Table 2      Robust multichip averages for gene set enrichment analysis (GSEA) up- and down-regulated genes.  

   The normalized dataset was analyzed using gene set enrichment analysis (Subramanian et al., 2005), which creates a ranked list for all 

genes on the arrays, and then scores gene sets derived from canonical biological pathways based on this list.   

 Figure 2    Transcriptomic analysis and pathway mapping of pathways altered in renal cell carcinoma cells following TIMP-1 - GPI treatment. 

 The highest ranked pathways in the analyses were linked to TGF- β /BMP, SMAD and ID protein biology. The association of these pathways 

with downstream effects is presented.    
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proliferation. Importantly, the ID proteins are well char-

acterized downstream targets of TGF- β 1/BMP signaling 

(Zebedee and Hara , 2001 ; Perk et al. , 2005 ). This would 

suggest that events upstream altering these pathways 

may represent an important mode of action of TIMP-1 –

 GPI in RCC cells. 

 Changes in TGF- β 1 may represent a potential 

upstream mechanism for TIMP-1 – GPI. TGF- β 1 is secreted 

as an inactive latent protein, which is activated through 
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 Figure 3    TIMP-1 - GPI treatment blocks TGF- β 1 processing, leading to 

reduced steady state expression of the ID genes. 

 (A) The steady-state expression of ID1, ID2, ID3 and ID4 was veri-

fied on the same samples used for the DNA arrays, as well as new 

samples generated in independent experiments using TaqMan 

(Applied Biosciences, Germany) reverse transcriptase polymerase 

chain reaction, as previously described (Cohen et al. , 2002 ) for hID1 

(Hs03676575_s1), hID2 (Hs00747379_m1), hID3 (Hs00171409_m1), 

hID4 (Hs00155465_m1) and rRNA (4310893E). *Vehicle and rhTIMP-1 

protein controls were compared to the TIMP-1-  GPI-treated samples 

using a Mann-Whitney  U -test that yielded a (one-tailed)  p -value of 

0.067 for each of the genes examined. (B) Treatment of renal cell 

carcinoma cells with TIMP-1 - GPI blocks the processing of latent TGF-

 β 1 to its active form. Total and active TGF- β 1 protein concentration 

was measured with an enzyme-linked immunosorbent assay kit (DB 

Biosciences, San Jose, CA, USA, No. 559119).  * Mann-Whitney  U -test 

comparing the untreated, vehicle and rhTIMP-1 protein controls 

to the TIMP-1 - GPI-treated samples yielded a (two-tailed)  p -value 

of 0.071 and a (one-tailed)  p -value of 0.035. (C) Proposed effect of 

TIMP-1 - GPI treatment on the proteolytic activation of latent TGF- β 1 

through blockades of matrix metalloproteinase-2 and -9 activity.    

proteolytic cleavage. MMP-2 and MMP-9 can perform this 

processing (Yu and Stamenkovic , 2000 ). TGF- β 1 signal-

ing induces downstream ID gene expression via SMAD3 

(Liang et al. , 2009 ). Altered TGF- β 1 function based on 

mutations leading to induction of ID regulation have 

been associated with several types of cancer (Padua and 

Massague , 2009 ). 

 This hypothesis was tested using a TGF- β 1-specific 

enzyme-linked immunosorbent assay that quantified the 

ratio of total secreted (latent/active) and TGF- β 1 protein 

in the growth media. The results demonstrated a pro-

found decrease in the level of active TGF- β 1 in RCC growth 

media after TIMP-1 - GPI treatment, but no significant 

change in the total amount of TGF- β 1 protein produced 

between vehicle, rhTIMP1 or TIMP-1 - GPI-treated RCC53 

cells (Figure 3B). The results suggest that TIMP-1 - GPI 

modulation of MMP-2 and MMP-9 activity reduces TGF- β 1 

processing. Reduced active TGF- β 1 would then have cor-

responding effects on downstream pathways, including 

ID gene expression. 

 Results from recent experiments using GPI-anchored 

N-terminal TIMP-1 protein that directly block MMP activ-

ity but lack the C-terminal hemopexin-binding domains, 

and the use of a  ‘ null ’  non-MMP inhibitory mutation of 

TIMP-1 - GPI (due to the addition of two valine residues to 

the amino terminus) support a central role for MMP inhi-

bition, and not the hemopexin-binding carboxyl domain 

of the protein, in moderating RCC proliferation and apo-

ptosis (Nicole Rieth, unpublished results). The blockade 

of TGF- β 1 processing may represent an important mode of 

action of TIMP-1 - GPI treatment (Figure 3C).  
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  TIMP-1 – GPI use in renal cell 
carcinoma treatment 
 Modern treatment of RCC includes nephron-saving 

surgery. The tumors are resected leaving a partial kidney 

in place. Residual tumor missed during the initial resec-

tion can be a major complication in this procedure. TIMP-

1 - GPI was originally developed to deliver TIMP-1 to defined 

tissue environments. By insertion into cell membranes, 

the GPI anchor limits diffusion of the fusion protein from 

the site of application (Djafarzadeh et al. , 2004, 2006, 

2012 ; Raggi et al. , 2009 ). Intraoperative peritumoral appli-

cation of TIMP-1 - GPI as an adjuvant to surgery could help 

maintain tumor control by targeting microscopic residual 

tumor cells in the context of resection. 

 TIMP-1 - GPI shows unique biology when compared to 

equivalent concentrations of rhTIMP-1. As shown here, in 

the context of RCC biology, these effects can be linked to 

a more effective blockade of the proteolytic processing of 

the important tumor growth factors TGF- β 1.   
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