5,854 research outputs found
Bayesian peak bagging analysis of 19 low-mass low-luminosity red giants observed with Kepler
The currently available Kepler light curves contain an outstanding amount of
information but a detailed analysis of the individual oscillation modes in the
observed power spectra, also known as peak bagging, is computationally
demanding and challenging to perform on a large number of targets. Our intent
is to perform for the first time a peak bagging analysis on a sample of 19
low-mass low-luminosity red giants observed by Kepler for more than four years.
This allows us to provide high-quality asteroseismic measurements that can be
exploited for an intensive testing of the physics used in stellar structure
models, stellar evolution and pulsation codes, as well as for refining existing
asteroseismic scaling relations in the red giant branch regime. For this
purpose, powerful and sophisticated analysis tools are needed. We exploit the
Bayesian code Diamonds, using an efficient nested sampling Monte Carlo
algorithm, to perform both a fast fitting of the individual oscillation modes
and a peak detection test based on the Bayesian evidence. We find good
agreement for the parameters estimated in the background fitting phase with
those given in the literature. We extract and characterize a total of 1618
oscillation modes, providing the largest set of detailed asteroseismic mode
measurements ever published. We report on the evidence of a change in regime
observed in the relation between linewidths and effective temperatures of the
stars occurring at the bottom of the RGB. We show the presence of a linewidth
depression or plateau around for all the red giants of the
sample. Lastly, we show a good agreement between our measurements of maximum
mode amplitudes and existing maximum amplitudes from global analyses provided
in the literature, useful as empirical tools to improve and simplify the future
peak bagging analysis on a larger sample of evolved stars.Comment: 78 pages, 46 figures, 22 tables. Accepted for publication in A&
High-precision acoustic helium signatures in 18 low-mass low-luminosity red giants. Analysis from more than four years of Kepler observations
High-precision frequencies of acoustic modes in red giant stars are now
available thanks to the long observing length and high-quality of the light
curves provided by the NASA Kepler mission, thus allowing to probe the interior
of evolved cool low-mass stars with unprecedented level of detail. We
characterize the acoustic signature of the helium second ionization zone in a
sample of 18 low-mass low-luminosity red giants by exploiting new mode
frequency measurements derived from more than four years of Kepler
observations. We analyze the second frequency differences of radial acoustic
modes in all the stars of the sample by using the Bayesian code Diamonds. We
find clear acoustic glitches due to the signature of helium second ionization
in all the stars of the sample. We measure the acoustic depth and the
characteristic width of the acoustic glitches with a precision level on average
around 2% and 8%, respectively. We find good agreement with
theoretical predictions and existing measurements from the literature. Lastly,
we derive the amplitude of the glitch signal at for the
second differences and for the frequencies with an average precision of
6%, obtaining values in the range 0.14-0.24 Hz, and 0.08-0.33
Hz, respectively, which can be used to investigate the helium abundance in
the stars.Comment: 12 pages, 19 figures, 3 tables. Accepted for publication in A&
Parametric, Optimization-Based Study on the Feasibility of a Multisegment Antisolvent Crystallizer for in Situ Fines Removal and Matching of Target Size Distribution
Peer reviewedPostprin
Alignment issues in photonic crystal device fabrication
An important requirement in the fabrication of photonic crystal structures is the correct relative alignment of structural elements. Accuracy should be in the order of some tens of nanometres. Some of the options for providing such accuracy are discussed. Examples are given of aligning defects with respect to a predefined 2D lattice, aligning access waveguides with respect to a small local photonic crystal structure, and the alignment of successive periodically structured layers in a 3D "woodpile" structure
- …