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ABSTRACT 

We have computationally investigated the use of the multi-segment, multi-addition, plug-flow 

crystallizer (MSMA-PFC) for use in producing pharmaceutical crystals. A population balance 

framework was used to model the crystallization process. The dissolution of crystals can be 

modeled when solubility is below saturation. The evolved volume fraction distributions were 

optimized in a least-squares sense by manipulating a vector of decision variables in order to hit a 

target volume fraction distribution. The genetic algorithm was used for optimization. A reduced 

orthogonal array experimental design was used to examine the effect of several kinetic 

parameters and total crystallizer length. The results indicate that the parameters which govern 

nucleation are the most sensitive, followed by those for growth. Dissolution does not appreciably 

occur in any of the optimizations. The reason the optimization does not add any pure solvent is 
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likely due to the addition of pure solvent causing a simultaneous decrease in concentration and 

decrease in residence time, which the optimization judges to be sub-optimal. 
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1. Introduction 

1.1 Continuous crystallization 

Continuous crystallization of pharmaceuticals has attracted much interest in recent years as a 

cheaper, more efficient alternative to batch-wise purification.1–5 This is part of an overall much 

broader research effort aimed at developing fully continuous pharmaceutical manufacturing 

systems, including reactors, crystallizers, granulators, and tableting machines – among others.6–9 

Crystallization is of special interest due to its ubiquity in pharmaceuticals – over 80% of active 

pharmaceutical ingredients (API) are purified by crystallization.10 The process is widely used in 

the agrochemical and fine chemicals industries as well. 11,12 

1.2 Motivation for In-Situ Removal of Fine Crystals 

While purification is the main motive behind crystallization, the crystal size distribution (CSD) 

affects downstream operations and the ameliorative properties of the final dosage form. The 

curative properties of the final dosage form are dependent on the dissolution rate and 

bioavailability, which are strongly affected by the CSD and other particle properties.13,14 

Downstream processes affected by CSD shape include filtering, washing, and drying.15 The 

presence of fine crystals greatly encumbers these operations. 



The typical method of removing fines is to classify the product crystals, re-dissolve the fines, 

separate the antisolvent when feasible, and recycle the mixture back to the crystallization system. 

However, this method is problematic. Classification, recycle, and stream separation require 

further process equipment, increasing capital and operating costs. Classification combined with 

recycle has been mathematically deduced (and subsequently observed) to impart oscillatory 

dynamics to the CSD12. These oscillations make it difficult to obtain a consistent product. 

Furthermore, from a risk analysis viewpoint, extra equipment is generally “more things that can 

go wrong”, and presents another route by which microbes could contaminate the manufacturing 

process. It would be good if we could eliminate fines altogether by an in-situ approach. 

1.3 Prior Work on In-Situ Fines Removal 

Previous work by Abu Bakar et al. and Majumder and Nagy explored the concept of “in-situ” 

fines removal, where the operation of the crystallizer actively eliminates fine crystals during the 

crystallization by means of dissolution.13,16 With this approach, classification, re-dissolving, and 

stream separation are rendered (in theory) unnecessary. The work by Majumder and Nagy most 

closely follows our work here. 16 In that work, a constrained nonlinear optimization problem was 

solved to identify temperature profiles that would match a target distribution in a least-squares sense by 

removing fine crystals. 

1.3.1 Cooling Crystallization versus Antisolvent Crystallization: The Coupling of Antisolvent 

Addition with Concentration and with Residence Time 

Majumder and Nagy previously investigated computationally the use of a multi-segment cooling 

crystallizer for in-situ fines dissolution.16 In that work, the decision variables were the jacket 

temperatures in each segment, which allowed the particular segment to go above or below 

solubility as necessary to dissolve the fine crystals and grow large ones. Ridder et al. have 



modeled and optimized a multi-segment antisolvent crystallizer for drug crystal production, but 

that work did not allow for dissolution to occur. 17,18 This work is an extension of the previous 

works by Ridder et. al. and Majumder and Nagy, as we are now using an antisolvent 

crystallization with the capability to dissolve crystals when below solubility.16  Figure 1 below 

depicts the path of information flow for a cooling PFC crystallization process, and an antisolvent 

PFC crystallization process. For an antisolvent crystallization, the decision variables are the 

flowrates of antisolvent into each segment. As can be seen in the figure, there is no coupling 

between concentration and residence time in the cooling crystallization. Residence time 

furthermore, is always constant. 

In the antisolvent case however, the addition of solvent reduces the current concentration via 

dilution. Also, residence time decreases monotonically with each successive segment. As we 

shall see further ahead, this coupling dramatically increases the difficulty of optimization and the 

performance of the crystallizer. 

  

(a) (b) 
 

Figure 1.  Information flow diagrams in a multisegment crystallizer for (a) cooling crystallization and (b) 

antisolvent crystallization. The cooling crystallization has no coupling between residence time and the control 

(jacket temperature), and residence time is constant within each segment. None of this is true in antisolvent 



crystallization, since the addition of antisolvent simultaneously affects the current concentration via dilution, and 

reduces the current residence time due to a mass balance argument. 

1.4 Parametric Study via Optimization of the Antisolvent Crystallizer 

In this work, we present results for the steady-state operation of a multi-segment, multi-addition, 

plug-flow crystallizer MSMA-PFC which utilizes dissolution to eliminate fine crystals. We have 

explored the geometric design parameters of the crystallizer, as well as the kinetic parameters of 

crystallization. To reiterate, this work is an extension of that by Majumder and Nagy, but for the 

case of antisolvent crystallization as opposed to a cooling crystallization.16 

2. Multiple segment, multiple-addition antisolvent plug flow crystallizer (MSMA-PFC) 

Model Framework 

2.1 Model Diagram 

 

Figure 2. Diagram of the multi-segment, multiple-addition plug flow crystallizer (MSMA-PFC). Seeded liquid 

solvent, with solute concentration 𝐶0 flows in from the left into a mixing chamber (gray box). The dilution 

correction factor, 𝛾𝑗, is applied to the exit stream around each mixing point (red dashed boxes). The combined 

streams then flow into a plug-flow segment (blue rectangle). Antisolvent reduces solubility, triggering nucleation 

and growth. Streams of pure solvent are utilized to push the solution below solubility when necessary. 

The MSMA-PFC is based on the setup in Alvarez and Myerson.2 It is modeled as a series of 

ideal plug flow elements, of equal length, and antisolvent is added at the beginning of each 



segment (Figure 2 above). Each of the N segments is a separate PFC, running in steady-state, 

isothermal operation. The inlet stream (at the far left) feeds saturated mother liquor at flowrate 

𝑉𝑓𝑒𝑒𝑑 (ml/min), with an initial concentration of solute, 𝐶0 (kg API/kg solution), and a seed CSD, 

𝑛0 (# of crystals/kg of solution∙m). At each mixing point (gray boxes in the figure) antisolvent 

flowing at flowrate 𝐴𝑗 (ml/min) and pure solvent at flowrate 𝑆𝑗 (ml/min), mixes together with the 

main stream for 𝑗 = 1,2, … , 𝑁. It is to be noted that we are using mass-intensive units for our 

state variables, 𝑛 (# of crystals/kg of solution∙m) and 𝐶 (kg API/kg solution). 

2.2 Summation Indices and Segment Indices 

Summation indices always use the letter 𝑖 as a dummy index. The letter 𝑗 always refers to “for 

the 𝑗𝑡ℎ PFC segment.” When an index refers to a mixing point, 𝑗 always refers to the mixing 

point immediately preceeding the 𝑗𝑡ℎ PFC segment (e.g. the 𝑗 = 1 mixing point is the very first 

mixing point on the left hand side in Figure 2 above). 

2.3 Effect of Dilution 

The addition of streams 𝐴𝑗 and 𝑆𝑗 to the process causes a decrease in 𝐶 and 𝑛 in the oncoming 

feed stream due to the effect of dilution. Concentration and number density are reduced because 

the solute mass (and crystal mass) has remained the same, but total volume has increased. There 

is a double meaning of this term in the literature, as some authors refer to antisolvent 

crystallization as “dilution.”12 We reiterate that in this paper, we refer to dilution as being the 

reduction in solute concentration due to the addition of a solute-free liquid at a constant solute 

mass. To account for this effect, the number density of the 𝑗𝑡ℎ outgoing stream, 𝑛𝑗  (# of 

crystals/kg of solution∙m) about the jth mixing point is multiplied by: 



 γ𝑗 =  
𝜌𝑗

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑉𝑗
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝜌𝑗+1
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑉𝑗+1

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 (1) 

Where 𝜌𝑗
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is the density of the solution, and 𝑉𝑗 is the volumetric flow rate of the entire 

stream. 𝑉𝑗
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 can be determined by dividing the total solution mass flow rate by the total 

solution density: 

 𝑉𝑗+1
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  

𝜌𝐻2𝑂(𝑉𝑓𝑒𝑒𝑑 + ∑ 𝑆𝑖
𝑗
𝑖=1 ) + 𝜌𝐸𝑡𝑂𝐻 ∑ 𝐴𝑖

𝑗
𝑖=1  

𝜌𝑗+1
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 (2) 

Where 𝜌𝐻2𝑂 and 𝜌𝐸𝑡𝑂𝐻 are the densities of water as solvent and ethanol as antisolvent (997 kg/m3 

and 785.22 kg/m3, respectively). The total solution density, 𝜌𝑗+1
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (kg/m3), is calculated 

numerically from a curve fit of the density of an ethanol-water mixture in terms of ethanol mass 

fraction. These expressions are derived by performing progressively wider mass balances about 

the mixing points and PFC segments. The method is more easily explained with a diagram 

(Figure 3 below). The colored boxes demonstrate the pattern one follows to ultimately derive (1) 

and (2). 

 

Figure 3. Mass balance envelopes that are used to derive γ dilution correction factor. Incoming streams are 

positive; outgoing are negative. 

After mixing with the solvent and antisolvent streams, the mixture then flows into the 𝑗𝑡ℎ PFC segment, 

where nucleation and growth occur. We assume the streams mix on a time scale well below the induction 

time, and also attain plug-flow. At the exit of the segment, a new size distribution, 𝑛(𝐿, 𝑥𝑗
𝑒𝑛𝑑), and a 



reduced solute concentration, 𝐶(𝑥𝑗
𝑒𝑛𝑑), are obtained. We will abbreviate these quantities as 𝑛𝑗

𝑒𝑛𝑑 and 

𝐶𝑗
𝑒𝑛𝑑. We clarify to the reader that this is not the same as 𝐶𝑗+1 or 𝑛𝑗+1; these quantities are created when 

the next solvent and antisolvent streams are added; the pattern of indexing is made clear in Figure 2 

above. This process continues recursively until the product stream leaves the final, 𝑁𝑡ℎ segment (product 

stream). The final crystal size distribution, 𝑛𝑁
𝑒𝑛𝑑, is used for solving the least-squares optimization 

problem. Both 𝑛𝑁
𝑒𝑛𝑑 and 𝐶𝑁

𝑒𝑛𝑑 are used to calculate several constraints. 

3. Crystal Population and Solute Mass Balance Equations 

Simulation of isothermal antisolvent crystallization processes requires two governing equations 

to be solved simultaneously: the population balance equation, and the mass balance equation. 

3.1 Population Balance Equation 

Population balances are a mathematical framework for tracking the properties of large 

populations of entities. Such balances are routinely used in the modeling of crystallization 

processes for the purpose of tracking size (though other properties, such as composition and 

shape, can also be plausibly tracked in this way).The first is the population balance equation for 

solving for the crystal size distribution: 

 𝑢𝑥,𝑗

𝜕𝑛𝑗

𝜕𝑥
+ 𝐺𝑗

𝜕𝑛𝑗

𝜕𝐿
=  𝐵0,𝑗𝛿(𝐿 − 𝐿0) (3) 

Where 𝑢𝑥 is the average velocity in the x-direction of the fluid (m/s), 𝑛 is the crystal size 

distribution (#/kg of solution∙m), 𝑥 (m) is the length along the crystallizer, 𝐺 (μm/s or m/s) is the 

linear crystal growth rate, 𝐿 (m or μm) is the characteristic crystal length, 𝐵0 is the nucleation 

rate (# of nucleated crystals/kg solution∙s), and 𝛿(𝐿 − 𝐿0) (m-1) is the Dirac delta function, which 

mathematically describes the assumption that nucleated crystals come into existence with size 

𝐿0. 𝐿 is referred to as the “internal coordinate” since it deals with the properties of entities within 



the control volume, while 𝑥 is the “external coordinate”, since it is a location in physical space 

within the control volume. We have assumed simple one-dimensional flow in our pipe, hence 

why there is only one external coordinate. We believe the assumption of 1-D flow to be valid, 

given that the Reynolds number for the flows studies was typically in excess of 9000. The 𝑗 

subscript always refers to the value of a quantity in the 𝑗𝑡ℎ PFC segment. 

The average velocity in the x-direction in the 𝑗𝑡ℎ segment is computed by dividing volumetric 

flow rate by the cross-sectional tube area: 

 𝑢𝑥,𝑗 =
𝑉𝑗

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝜋𝑑𝑖𝑛𝑛𝑒𝑟
2 4⁄

 (4) 

Where 𝑑𝑖𝑛𝑛𝑒𝑟 is the inner diameter of the crystallizer tube, which is the same for all segments. 

3.2 Definition of Moment 

The 𝑘𝑡ℎ-moment of the crystal size distribution in the 𝑗𝑡ℎ PFC segment is defined by: 

 𝜇𝑘,𝑗 = ∫ 𝑛𝑗𝐿𝑘𝑑𝐿
∞

0

 (5) 

With units of (mk/kg solution). The interpretation of the first several moments (per kg solution) 

are: 

 𝜇0: The total number of crystals. 

 𝜇1: Measure of the total end-to-end-length of the crystals. 

 𝜇2: Measure of the total interfacial surface area of the crystals exposed to the solution. 

 𝜇3: Measure of the total volume of the crystals. 

3.3 Mass Balance Equation 

The other equation is the mass balance for dissolved drug: 



 
𝑑𝐶𝑗

𝑑𝑥
= −

𝜌𝑐𝑘𝑣

𝑢𝑥,𝑗
(3𝐺𝜇2,𝑗 + 𝐵0,𝑗𝐿0

3) (6) 

The term 𝜇2 is the second moment of the crystal size distribution (m2 of crystals/kg solution). 𝐶 

is the solute concentration in the liquid phase (kg API/kg solution), 𝜌𝑐 is the density of 

crystalline API (assumed to be 1490 kg/m3), 𝐿0 is the minimum detectable crystal size (m), 𝐵0 is 

the nucleation rate (# of nucleated crystals/kg solution∙s), and 𝑘𝑣 is the dimensionless crystal shape 

factor (𝜋/6 for spheres) 19.  In a pure mathematical treatment, 𝐿0 would simply be set to zero; however, 

all instrumentation used in practice for experimentation and process control will have limits to 

observability. Equation (6) is an integro-differential equation, since 𝜇2 is defined by the integral 

expression (5). 

3.4 Boundary Conditions 

For the first segment (𝑗 = 1), the boundary conditions for these equations are: 

 

𝑛1(𝐿, 𝑥 = 0) =γ1𝑛0 

𝑛1(𝐿 = 0, 𝑥) = 𝐵0,1 𝐺1⁄  

𝐶1(𝑥 = 0) =γ1𝐶0 

(7) 

Where 𝑛0 is the crystal size distribution of the seed crystals, 𝐵0 is the nucleation rate (#/kg of 

solution∙s), and 𝐶0 is the initial solute concentration. In subsequent segments (𝑗 ≥ 2), the 

boundary conditions become: 

 

𝑛𝑗(𝐿, 𝑥 = 0) =γ𝑗𝑛𝑗−1
𝑒𝑛𝑑 

𝑛𝑗(𝐿 = 0, 𝑥) = 𝐵0,𝑗 𝐺𝑗⁄  

𝐶𝑗(𝑥 = 0) =γ𝑗𝐶𝑗−1
𝑒𝑛𝑑 

(8) 

A Gaussian bell curve was used for 𝑛0 (#/kg of solution∙m) in all cases, with mean 𝛿𝑠𝑒𝑒𝑑 (m) and 

standard deviation 𝜔𝑠𝑒𝑒𝑑 (m): 



 𝑛0(𝐿) =
𝑁𝑡𝑜𝑡𝑎𝑙

𝜔𝑠𝑒𝑒𝑑√2𝜋
exp (−

(𝐿 − 𝛿𝑠𝑒𝑒𝑑)2

2𝜔𝑠𝑒𝑒𝑑
2

) (9) 

Where 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number density (# of crystals/kg solution). 𝑁𝑡𝑜𝑡𝑎𝑙 can be interpreted in 

(9) as a constant that forces the seed distribution to agree with the specified seed mass loading, 𝜆 

(%, dimensionless). The mass balance on the seed distribution is closed by solving the algebraic 

equation for 𝑁𝑡𝑜𝑡𝑎𝑙 such that: 

 𝜆𝐶0 − 𝜌𝑐𝑘𝑣𝜇3,0 = 0 (10) 

where 𝜇3,0 is the third moment of the seed distribution. Equation (10) is closed by manipulating 

𝑁𝑡𝑜𝑡𝑎𝑙, which is embedded in the integral term 𝜇3,0: 

 𝜇3,0 = ∫ 𝑛0𝐿3𝑑𝐿
∞

0

 (11) 

 

3.5 Growth, Nucleation, and Dissolution Rate Laws 

The growth and nucleation laws are given by the equations (again, all 𝑗 subscripts refer to the 𝑗𝑡ℎ 

segment): 

 

𝐺𝑗(𝑆𝑗) = 𝑘𝑔𝜎𝑗
𝑔

, 𝐵0,𝑗(𝜎𝑗) = 𝑘𝑏𝜇2𝜎𝑗
𝑏 , 𝐷𝑗(𝜎𝑗) = −𝜑𝑘𝑔(1 − 𝜎𝑗)𝑑 

𝜎𝑗 = 𝐶𝑗(𝑥)/𝐶𝑠𝑎𝑡,𝑗 

(12) 

where 𝜎 is the supersaturation ratio, 𝑘𝑔 is the growth rate constant (m/s), 𝑔 is the growth rate 

order, 𝑘𝑏 is the nucleation rate constant, 𝑏 is the nucleation order, 𝐷 is the dissolution rate (m/s), 

𝑑 is the dissolution order, and 𝐶𝑠𝑎𝑡 is the solubility concentration (kg API/kg solution). 𝐺 is 

replaced by 𝐷 in (3) for 𝜎 <  1. 



We use a modified version of the growth law for the dissolution rate law. The dissolution rate 

can be approximated by multiplying the modified version of the growth law by a constant 𝜑 > 1, 

which adjusts for the fact that dissolution is typically much faster than growth. The calculation of 

𝐶𝑠𝑎𝑡 is discussed in section 3.6 below.  The values of the kinetic parameters are taken from 

experimental work by Luo et al. and are included in Table 1.19 These parameters were chosen 

because they are expressed in terms of water mass fraction, which is significantly easier to work 

with than other representations. 

Table 1.  Physical and chemical property data table used for modeling the antisolvent crystallization. 

Parameter Value 

Initial concentration, 𝐶0 

[kg API/kg solution] 
0.030935 

Shape factor 𝑘𝑣, [-] π/6 

Solid API density 𝜌𝑐, 

[kg/m3] 
1490 

Dissolution 

acceleration, 𝜑 [-] 
250 

Number of segments, 𝑁 

[-] 
50 

Seed crystal mean size, 

𝛿𝑠𝑒𝑒𝑑  [μm] 
50 

Seed crystal standard 

deviation, 𝜔𝑠𝑒𝑒𝑑 [μm] 
10 

 

3.6 Calculation of API Solubility 

The solubility of the API in a water-ethanol (solvent-antisolvent) mixture at 25 ℃ was taken 

from the experimental data plot provided in Figure 2 of Luo et al. 19 for the case of the drug 

biapenem. Data points were extracted from the curve, and are given in  



Table 2 below. Comparison with various curve fitting methods in MATLAB showed that linear 

interpolation provided the best fit. The data correspond to a minimum solubility in ethanol as 

2.464 mg/ml, and a maximum solubility in water as 30.935 mg/ml. 

 

Table 2. Solubility data for biapenem-water-ethanol system at 25 ℃. 

Water Mass Fraction, 

Xw 

Csat x 103 (kg solute/kg 

solution) 

0.199 2.464 

0.299 2.831 

0.398 3.497 

0.500 4.463 

0.599 6.103 

0.699 9.615 

0.799 15.299 

0.898 21.956 

1.000 30.935 

 

The water mass fraction in the 𝑗𝑡ℎ PFC is computed by: 

 𝑋𝐻2𝑂
𝑗

=
𝜌𝐻2𝑂𝑉𝑓𝑒𝑒𝑑 + 𝜌𝐻2𝑂 ∑ 𝑆𝑖

𝑗
𝑖=1

𝜌𝐻2𝑂𝑉𝑓𝑒𝑒𝑑 + 𝜌𝐻2𝑂 ∑ 𝑆𝑖
𝑗
𝑖=1 + 𝜌𝐸𝑡𝑂𝐻 ∑ 𝐴𝑖

𝑗
𝑖=1

 (13) 

Plugging 𝑋𝐻2𝑂
𝑗

 into the curve fit object created in MATLAB yields the solubility concentration 

of biapenem, 𝐶𝑠𝑎𝑡,𝑗. 

3.7 Solution of Model Equations 

A typical method used for solving equations (3) and (6) is to apply the method of moments 

(MOM), which reduces system to a small number of coupled ordinary differential equations for 

the moments of the crystal size distribution. However, this method is useless here, since we need 

the full CSD to be able to match the target distribution. Previous researchers have attempted 

various deconvolution/inversion methods in the moments to re-construct the crystal size 



distribution, but these methods tend to yield poor results and be more trouble than they are 

worth.20 A variety of methods have been developed for direct solution of the population balance 

equation. To solve this system, we have utilized a high-resolution finite volume (FV) technique, 

which is the combination of the semi-discrete FV technique with the van Leer flux limiter.16,21 

This method provides 𝑂(ℎ2) accuracy where the solution is smooth, without the oscillations 

found in other methods. Details on the finite volume method are given in Majumder and Nagy.16  

Equation (3) was discretized into 𝐾 ordinary differential equations, where 𝐾 is the number of 

crystal size bins. The discretization started at 1 μm, and marched upward up to the maximum bin 

size of 500 μm, for a total of 𝐾 = 101 bins. Equations (3) and (6) are solved simultaneously, 

with the sixth-order accurate Boole’s Rule used to approximate 𝜇2 in (6). The method marches 

forward into external space, using 10 steps in external space. 

4. Optimization Problem Formulation 

Our goal is to eliminate the production of fine crystals by utilizing dissolution. The quality of the 

elimination is ascertained by measuring how closely the attained volume fraction distribution 

leaving the 𝑁𝑡ℎ PFC (𝑓𝑣,𝑁,𝑒𝑛𝑑) matches a theoretically-best growth-only volume fraction 

distribution, 𝑓𝑣,𝑡𝑎𝑟𝑔𝑒𝑡. The target distribution is generated by simulating the crystallization with 

only one segment, with nucleation arbitrarily set to zero. With no nucleation, all solute depletion 

is solely due to crystal growth on the seeds, and no fine crystals are ever created. Thus, the target 

distribution is a hypothetical best-case scenario of pure growth achieved without nucleation. The 

closeness of matching can be expressed in a least-squares sense. By manipulation of the 

antisolvent and solvent flowrates in each segment (and other decision variables), we can make 

the fit between the model and the target distribution tighter. 



Equations (3) and (6) are solved for each segment, and the output of one segment recursively 

becomes the input to the next segment. The procedure begins anew, with fresh antisolvent and 

pure solvent flowing into the main flow stream. Population density and solute concentration are 

adjusted for the dilution induced by addition of solvent and antisolvent at each mixing point. 

 

4.1 Least-Squares Objective Function 

The final volume fraction distribution, 𝑓𝑣,𝑁,𝑒𝑛𝑑, is used for formulating the least-squares 

problem: 

 

𝑚𝑖𝑛
𝒅

∑(𝑓𝑣,𝑁,𝑒𝑛𝑑
𝑖 − 𝑓𝑣,𝑡𝑎𝑟𝑔𝑒𝑡

𝑖 )
2

𝐾

𝑖=1

 

𝑠. 𝑡. Model equations 3 − 13 

 constraints (discussed later) 

 

(14) 

Where 𝒅 is the vector of 2𝑁 + 5 decision variables, and 𝑓𝑣,𝑁,𝑒𝑛𝑑 is the volume fraction size 

distribution at the exit of the crystallizer. It is computed as: 

 𝑓𝑣,𝑁,𝑒𝑛𝑑 =
𝑛𝑁

𝑒𝑛𝑑𝐿3

∫ 𝑛𝑁
𝑒𝑛𝑑𝐿3∞

0
𝑑𝐿

 (15) 

The index 𝑖 in (14) refers to a particular crystal size bin, with 𝐾 total bins. Note that 𝑛 integrates 

to 𝑛𝑡𝑜𝑡𝑎𝑙 (the total number of crystals in the solution), while 𝑓𝑣,𝑁,𝑒𝑛𝑑 integrates to 1. We use the 

volume fraction distribution instead of the number density, since the addition of extra solvent 

and antisolvent causes dilution.  



4.2 List of Decision Variables and Bound Constraints 

All 2𝑁 + 5 decision variables in these optimizations had bound constraints. Table 3 below 

summarizes the decision variables and their lower/upper bounds.  

 

 

Table 3. Decision variables and bound constraints for in-situ fines dissolution optimization. 

Decision 

Variable 

Title Units 

Lower 

Bound 

Upper 

Bound 

𝑉𝑓𝑒𝑒𝑑 Feed flowrate of saturated solvent [ml/min] 0 300 

𝐴𝑡𝑜𝑡𝑎𝑙 Total flowrate of antisolvent [ml/min] 0 300 

𝑆𝑡𝑜𝑡𝑎𝑙 Total flowrate of pure solvent [ml/min] 0 150 

𝑑𝑖𝑛𝑛𝑒𝑟 Inner diameter of crystallizer tube [m] 10 × 10−3 25 × 10−3 

𝜆 Seed mass loading [%] 2% 7% 

𝑎1, 𝑎2, … , 𝑎𝑁 Antisolvent distribution fractions [-] 0 1 

𝑠1, 𝑠2, … , 𝑠𝑁 Pure solvent distribution fractions [-] 0 1 

 

The optimization of the MSMA-PFC is known to be highly non-convex, as shown by the 

landscape plots in Ridder et al.17 Such problems are not amenable to gradient search, and so we 

have opted for a stochastic approach to circumvent the nonconvexity. The genetic algorithm 

(GA) is a popular tool for solving optimization problems with this kind of difficulty. To make 

the GA operate more smoothly, our decision variables were fractions of the total antisolvent and 



total pure solvent. The flowrate into a segment 𝑗 is the 𝑗𝑡ℎ fractional distribution variable 

multiplied by total flow allotment. 

 

 

𝐴𝑗 = 𝑎𝑗𝐴𝑡𝑜𝑡𝑎𝑙  

𝑆𝑗 = 𝑠𝑗𝑆𝑡𝑜𝑡𝑎𝑙 

(16) 

 

4.3 Linear and Nonlinear Constraints 

There were no linear inequalities in this study. The only linear constraints in this work are two 

equalities, which require the apportionments of total liquid flows must each sum to unity. The 

remaining four constraints are nonlinear inequalities. Table 4 below summarizes these 

constraints. 

Table 4. Linear and nonlinear constraints for in-situ fines dissolution optimization. 

Name Constraint Description Type 

𝑐1 
∑ 𝑎𝑖

𝑁

𝑗=1

= 1 

 
Total fractions of added liquid flows must sum to unity. Linear 

𝑐2 
∑ 𝑠𝑖

𝑁

𝑗=1

= 1 

 

𝑐3 𝜎𝑁
𝑒𝑛𝑑 − 1.05 ≤ 0 Final supersaturation is bracketed between 0.5 and 1.05. 

 

 
Nonlinear 

𝑐4 0.5 − 𝜎𝑁
𝑒𝑛𝑑 ≤ 0 

𝑐5 𝜏𝑡𝑜𝑡𝑎𝑙 − 3600 ≤ 0 Total residence time under 3600 seconds (1 hour). 

𝑐6 0.30 − 𝑌 ≤ 0 Minimum required crystal mass yield of 30%. 

 



In the multiple-cooling segment PFC array, residence time is constant, since flowrate of liquor 

into each segment is always the same. However, the addition of antisolvent and pure solvent to 

the liquor flow changes residence time into a nonlinear function: 

 𝜏𝑡𝑜𝑡𝑎𝑙 = ∑ 𝜏𝑗

𝑁

𝑗=1

=
𝜋𝑑𝑖𝑛𝑛𝑒𝑟

2 (𝑥𝑡𝑜𝑡𝑎𝑙/𝑁)

4
∑

1

𝑉𝑓𝑒𝑒𝑑 + 𝐴𝑡𝑜𝑡𝑎𝑙 ∑ 𝑎𝑖
𝑗
𝑖=1 + 𝑆𝑡𝑜𝑡𝑎𝑙 ∑ 𝑠𝑖

𝑗
𝑖=1

𝑁

𝑗=1

 (17) 

Where 𝑥𝑡𝑜𝑡𝑎𝑙/𝑁 is the length of a single segment. The 𝑗𝑡ℎ summand in (17) is the residence time 

for the 𝑗𝑡ℎ segment, which is the segment’s volume divided by the total flow rate through that 

segment. The total residence time is found by summing over all 𝑗 individual residence times. 

Since each PFC segment’s volume is the same, it is taken out of the summation distributively. 

Yield is calculated in the following manner: 

 𝑌 =
𝑉𝑓𝑒𝑒𝑑𝜌𝐻2𝑂𝐶0 − (𝑉𝑓𝑒𝑒𝑑𝜌𝐻2𝑂 + 𝑆𝑡𝑜𝑡𝑎𝑙𝜌𝐻2𝑂 + 𝐴𝑡𝑜𝑡𝑎𝑙𝜌𝐸𝑡𝑂𝐻)𝐶𝑁

𝑒𝑛𝑑

𝑉𝑓𝑒𝑒𝑑𝜌𝐻2𝑂𝐶0
 (18) 

If 𝐶𝑁
𝑒𝑛𝑑 = 0, then all of the solute has been crystallized, and thus 𝑌 = 1. If no crystallization has 

occurred, the numerator will be zero, and thus 𝑌 = 0. If seed crystals have been dissolved due to 

excessive dissolution, then 𝑌 can become negative. 

5. Solution of Least-Squares Problem by the Genetic Algorithm 

5.1 Nonconvexity of Search Space 

The genetic algorithm is an optimization algorithm based on the theory of natural selection. 

Briefly, solutions to the optimization problem are filtered by starting with a large initial 

“population”, and judging their “fitness” in terms of the score they output when substituted into 

the objective function. “Unfit” candidates are eliminated from the gene pool, while the survivors 

have “children” with each other by various genetic operators of crossover and mutation. This 



process repeats itself for several “generations” or until a certain tolerance threshold on the 

objective function is satisfied. More complexity arises when constraints are introduced into the 

problem. The GA is less efficient compared to gradient-based methods, such as sequential 

quadratic programming (SQP). However, algorithms like SQP are not robust to initial guess, and 

can become trapped in a sub-optimal local minimum.22,23 This is true when the objective function 

and/or constraints are non-convex. Stochastic methods, such as the GA or simulated annealing, 

are appropriate for nonconvex optimization. 

5.2 Genetic Algorithm Solution 

The problem was solved by manipulating the 2𝑁 + 5 decision variables with the genetic 

algorithm (GA). The initial population was created by randomly sampling over the bounds given 

in Table 3. The number of injections was arrived at through trial and error. The number of 

injections could not be used as a decision variable, as MATLAB’s current genetic algorithm 

cannot solve mixed-integer nonlinear programming (MINLP) problems that have any type of 

equality constraint. The number of injections used was 50, which gave a good tradeoff between 

curve fit and computation time. The population size was 750, repeated for up to 25 generations. 

The MATLAB integrator, depending on the particular run, was chosen for the quickest solution 

time. Either ode45, ode15s, or ode23 were used. 

6. Results and Discussion 

To investigate the crystallizer’s performance for various kinetic parameters and total lengths, a 

reduced orthogonal array experimental design was used, with five factors, four levels, and 16 

total runs. The five factors are the nucleation and growth parameters, and the total crystallizer 

length. The five factors and the four levels used are shown in Table 5 below. 



Table 5. Table of the five factors and four levels used for examining parameter space. 

Level 
Nucleation rate constant, 

𝒌𝒃 [#/m2∙s] 

Nucleation order, 

𝒃 [-] 

Growth 

rate 

constant 

𝒌𝒈 [μm/s] 

Growth 

order 𝒈 

[-] 

Total length 

of crystallizer, 

𝒙𝒕𝒐𝒕𝒂𝒍 [m] 

1 1 × 106 1 0.1 1 5 

2 1 × 107 2 0.5 1.333 10 

3 1 × 108 3 1 1.667 15 

4 1 × 109 4 5 2 20 

 

A reduced design was used, since exhaustive search over 45 = 1024 different optimizations was 

computationally prohibitive. This experimental table is given in Table 6. The orthogonal array 

table allows for a good sampling of the parameter space with only 16 samples instead of 1024. 

 

Table 6. Experimental design table of factors and levels for the curve fit optimizations conducted. 

The numbers correspond to the level column in Table 5. The sum of the squares of the errors (SSE) 

and total amount of pure solvent added (𝑺𝒕𝒐𝒕𝒂𝒍) are given for each run. 

Run # 𝒌𝒃 𝒃 𝒌𝒈 𝒈 𝒙𝒕𝒐𝒕𝒂𝒍 SSE 𝑺𝒕𝒐𝒕𝒂𝒍 

1 1 1 1 1 1 2.67E+07 80 

2 1 2 2 2 2 4.71E+06 0 

3 1 3 3 3 3 1.25E+07 1 

4 1 4 4 4 4 7.58E+05 1 

5 2 1 2 3 4 5.62E+08 3 

6 2 2 1 4 3 7.42E+08 0 

7 2 3 4 1 2 2.25E+07 2 



8 2 4 3 2 1 6.93E+07 0 

9 3 1 3 4 2 2.22E+09 8 

10 3 2 4 3 1 2.10E+08 2 

11 3 3 1 2 4 6.08E+09 0 

12 3 4 2 1 3 3.10E+09 9 

13 4 1 4 2 3 3.41E+09 11 

14 4 2 3 1 4 7.82E+09 24 

15 4 3 2 4 1 8.28E+09 25 

16 4 4 1 3 2 1.27E+10 16 

 

Table 6 above shows the experimental design matrix, as well as the resulting sum of the squared 

errors for each curve fit to the zero-nucleation target distribution. 

6.1 Volume Fraction Distributions for Optimized Cases 

The data in Table 6 show that run #1 gave the tightest curve fit (Figure 4). The reason for this 

tight curve fit is due to the system exhibiting low nucleation (the 𝑘𝑏 level is at the lowest level). 

Also in Figure 4. we show the performance of a single segment with nucleation turned back on 

(𝐵0 > 0). We can see there is little improvement observed between MSMA-PFC and using a 

single segment. 



 

Figure 4. Volume-fraction distribution for run #1. 

Increasing values of 𝑘𝑏 rapidly degrade the curve fit due to overwhelming nucleation. Run #11 is 

representative of runs which are nucleation-dominated. As shown in Figure 5, there is a large 

amount of fines created, and the optimal result fails to hit the target distribution. While we have 

improved the volume fraction distribution over the single-segment case by producing less fines 

at the exit, there is still a great deal of fines produced. The nucleation rate constant has the 

greatest effect upon the performance of the crystallizer, indicating significant sensitivity to 

nucleation rate. 
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Figure 5. Volume-fraction distribution for run #11, a nucleation-dominated case. 

6.2 Main-Factor Analysis 

The results in section 6.1 suggest to us that the best results, intuitively, are obtained when the 

system is growth-dominated. Main-factor analysis of the experimental matrix confirms this 

suspicion. Main-factor analysis is done by taking the average of all SSE for a given factor at the 

same level. For example, the average for the factor 𝑘𝑏 at level 2 would take the average SSE over 

runs 5, 6, 7, and 8. This process is repeated for all five factors and all four levels, which 

generates Table 7 below. 
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Table 7.  Level-wise averages of SSE for each corresponding level and factor pair. 

 

𝒌𝒃 𝒃 𝒌𝒈 𝒈 𝒙𝒕𝒐𝒕𝒂𝒍 

L1 1.12E+07 1.56E+09 4.89E+09 2.74E+09 2.15E+09 

L2 3.49E+08 2.20E+09 2.99E+09 2.39E+09 3.74E+09 

L3 2.90E+09 3.60E+09 2.53E+09 3.38E+09 1.82E+09 

L4 8.06E+09 3.97E+09 9.11E+08 2.81E+09 3.62E+09 

 

This analysis reveals to us what the most sensitive parameters are, and also what set of levels 

will provide the best curve fit – which we hypothesized would be the growth-dominated case. 

We can see in Table 7 that the factor 𝑘𝑏 spans the widest range of SSE values over the level 

averages. We thus conclude that 𝑘𝑏 is the most sensitive parameter. Following the same line of 

reasoning, the second-most sensitive parameter is 𝑘𝑔. The optimal curve fit is projected to be the set of 

levels for which SSE is a minimum for each corresponding factor. These values are shown in boldface in 

Table 7 (they are the minimum values within each column). The main-factor analysis projects that the 

tightest curve fit will be observed at a 𝑘𝑏 of level 1, a 𝑏 of level 1, a 𝑘𝑔 of level 4, a 𝑔 of level 2, and 

an 𝑥𝑡𝑜𝑡𝑎𝑙 of level 3. We term this the “projected optimum.” Note that this set of factors and levels is not 

present in Table 6. Solving the optimization problem with this new set of parameters generates the 

volume fraction distributions in Figure 6, which had an SSE of 4.83 × 105, which is less than the 

minimum of 7.58 × 105 in Table 6. 

 



 

Figure 6. Optimal fit predicted by analysis of the orthogonal array design. 

This result matches our intuition that the best result is obtained when nucleation is slow and 

growth is fast. However, this has the effect of “cancelling out” the benefits of using multiple 

injections, as we obtain a very tight fit to the curve anyways when using a single injection for 

this set of kinetic parameters. There was no discernible trend observed with respect to the 

optimized tube diameter. However, seed loading was typically between 5.0%-6.5%. 

6.3 No Dissolution is Used to Control Fines 

It is interesting (even if a bit disappointing) to observe that the optimization does not want to use 

dissolution to get rid of fine crystals. The total amount of pure solvent added during each 

optimization is given as the rightmost column in Table 6. Observe that little to no pure solvent is 

ever added to the system for the optimal curve fits (observe in Table 3 that 𝑆𝑡𝑜𝑡𝑎𝑙is bounded on 

the left by zero). The supersaturation ratio profiles (𝜎 vs. 𝑥 plots) show barely any dissolution 

occurring. The supersaturation profile for the “project optimum” is representative (Figure 7). 
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Figure 7. Supersaturation profile for project optimum, representative of the other supersaturation profiles. 

Note how the supersaturation does not significantly (or at all) go below 1 anywhere in Figure 7. 

This indicates to us that the situations in which the curve fit is superior to the single-segment 

case (Figure 4 and Figure 5) is more likely due to the better control offered by using multiple 

segments (and thus having finer control over supersaturation), rather than making use of fines 

dissolution. The reason the optimization refuses to add pure solvent in significant amounts is due 

to the fact that adding pure solvent reduces the concentration (via dilution) and reduces available 

residence time (via equation (17)). Reduced concentration reduces the available supersaturation, 

and reducing the residence time reduces the time available for growth inside the MSMA-PFC. 

Thus, despite the potential for dissolving fines, the benefit of adding pure solvent does not 

counterbalance the other two negative phenomena. 

7. Summary and Conclusions 

We have investigated the optimal operation of antisolvent crystallization in a MSMA-PFC and 

explored the feasibility of dissolution steps by addition of pure solvent in order to dissolve the 

fine crystals in-situ.  The model equations solved were the population balance equation and the 
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integro-differential mass balance equation. The solution method used was the finite volume 

method, since the entire CSD was required to calculate the sum of the squared errors for the 

curve fit. The final CSD was compared to a target CSD generated by arbitrarily setting 

nucleation to zero. A reduced orthogonal array experimental design was used to examine the 

effect of several kinetic parameters and total crystallizer length. The genetic algorithm was used 

to optimize over the decision variables, with the parameters from the experimental design table 

held constant. The results indicate that 𝑘𝑏 is the most sensitive parameter, followed by 𝑘𝑔. As 𝑘𝑏 

increases, the curve fit degrades rapidly due to becoming overwhelmed by nucleation. 

Examination of the supersaturation profiles shows that dissolution is not occurring appreciably 

for any of the optimizations performed. The MSMA-PFC performs best under kinetic 

crystallization conditions in which a single PFC also works sufficiently well. There are situations 

where using multiple additions does improve the curve fit versus the single-segment case, but 

excessive fines still exist. The reason the optimization does not add any pure solvent is likely due 

to the addition of pure solvent causing a simultaneous decrease in concentration and decrease in 

residence time. Both of these cause the optimization to take “one step forward and two steps 

back”, thus adding pure solvent is judged to be sub-optimal. 

 To implement this system in practice, several sensors and control loops would be 

necessary. A variety of low-cost sensors have been developed in recent years.24 The paper by 

Simon et. al. 25 reviews the state of the art with regards to sensors, but only a few are feasible for 

use in this system. Ultrasonic crystallization monitoring (UCM) is only applicable for crystal 

sizes of at least 100 microns, which is too large for most of the crystals simulated in this study. 

Conductometry measurements for concentration are only feasible if the compound being 



crystallized is inorganic. Raman spectroscopy is only necessary if a shift in polymorphic form in 

expected. 

 The most likely candidates for CSD monitoring are either/or focused beam reflectance 

measurement (FBRM) and video imaging, as well as FTIR for measurement of concentration. 

However, even these techniques may only be practical for the larger crystals, thus allowing only 

a portion of the crystal size distribution to be measured. FBRM signals would need to be 

adjusted, as FBRM only measures chord length distribution, and not crystal size distribution. The 

continuous nature of the crystallization suggests also a continuous approach to data collection. 

Data from these sensors can be viewed as a continuous stream of complex information, which 

requires sophisticated algorithms to process for accurate state estimation. Such methods are 

reviewed in Simon et. al.25 

 For feedback control, the likely measured variables would be the CSD and concentrations 

at the exit of the crystallizer array, which would then feedback to flow controllers for the 

dispensation of solvent and antisolvent. Adjustment of flow rates to the individual segments 

would function as feedback actuation method. Comparison between the expected CSD and 

measured CSD, and expected concentration and measured concentration, would drive the 

feedback control. A more complicated approach would be to have CSD and concentration 

sensors in between each crystallizer segment, thus providing much more information on the 

evolution of the CSD as a function of length. Flow controllers could then respond much faster to 

process disturbances, as crystals would not need to flow all the way to the exit of the crystallizer 

before controller action is taken. Feedforward control also seems like a likely necessity, as the 

properties of the input seed crystals may not be uniform in time, and thus represent a disturbance 



at the inlet of the process. Fluctuations in inlet concentration are also possible, requiring further 

additional control. 

 Some comparison with the previous work by Majumder and Nagy is in order.16 That 

work is very similar to this work. In both cases, crystallization is being optimized in a least-

squares sense by manipulating process parameters in order to hit a target distribution. In that 

work however, temperature was the method for altering supersaturation, whereas in this case we 

used antisolvent to alter liquid-phase composition (and hence, the supersaturation). One of the 

key differences between that work and this work, is that temperature cycling is observed to be 

the optimal strategy for the elimination of fine crystals. It was observed in that work further that 

the efficacy of the optimization was significantly enhanced if the crystallization and dissolution 

kinetics were size-dependent. We have not considered size-dependency in this work, which may 

be a worthwhile subject of future investigation. 

Nomenclature 

Symbol Meaning Units 

𝑎1, 𝑎2, … , 𝑎𝑁 Proportion of total antisolvent allocated to the 

𝑗𝑡ℎ segment  

- 

𝐴 Antisolvent flowrate ml/min 

𝐴𝑡𝑜𝑡𝑎𝑙  Total flowrate of added antisolvent summed 

over all segments 

ml/min 

𝑏 Nucleation order - 

𝐵0 Nucleation rate # of nucleated crystals/kg 

solution∙s 

𝐶 Solute concentration kg API/kg solution 

𝐶0 Initial concentration of solute kg API/kg solution 

𝐶(𝑥𝑗
𝑒𝑛𝑑) or 𝐶𝑗

𝑒𝑛𝑑 Solute concentration at the end of the 𝑗𝑡ℎ 

segment 

kg API/kg solution 

𝐶𝑁
𝑒𝑛𝑑 Solute concentration at the exit of the kg API/kg solution 



crystallizer 

𝐶𝑠𝑎𝑡 Solubility (saturation) concentration kg API/kg solution 

𝑑 Dissolution order - 

𝒅 Vector of decision variables varies 

𝑑𝑖𝑛𝑛𝑒𝑟 Inner diameter of crystallizer tube m 

𝐷 Crystal linear dissolution rate m/s 

𝑓𝑣 Volume fraction distribution m-1 

𝑓𝑣,𝑁,𝑒𝑛𝑑 Volume fraction distribution at the exit of the 

crystallizer 

m-1 

𝑓𝑣,𝑡𝑎𝑟𝑔𝑒𝑡 Target volume fraction distribution m-1 

𝑔 Growth rate order - 

𝐺 Crystal linear growth rate μm/s or m/s 

𝑖 Dummy summation index - 

𝑗 Index corresponding to the 𝑗𝑡ℎ crystallizer 

segment 

- 

𝐾 Total number of crystal size bins - 

𝑘𝑏 Nucleation rate constant # of nucleated crystals/m2∙s 

𝑘𝑔 Growth rate constant m/s 

𝑘𝑣 Crystal shape factor, 𝜋/6 - 

𝐿 Internal coordinate; characteristic crystal length m or μm 

𝐿0 The smallest crystal size bin μm 

𝑛 Number density (crystal size distribution) # of crystals/kg of solution∙m 

N Number of crystallizer segments - 

𝑛0 Seed crystal size distribution # of crystals/kg of solution∙m 

𝑛(𝐿, 𝑥𝑗
𝑒𝑛𝑑) or 𝑛𝑗

𝑒𝑛𝑑 Number density at the end of the 𝑗𝑡ℎ segment # of crystals/kg of solution∙m 

𝑛𝑁
𝑒𝑛𝑑 Crystal size distribution at the exit of the 

crystallizer 

# of crystals/kg of solution∙m 

𝑁𝑡𝑜𝑡𝑎𝑙 Total number density of crystals # of crystals/kg solution 

𝑆 Pure solvent flowrate ml/min 

𝑠1, 𝑠2, … , 𝑠𝑁 Proportion of total pure solvent allocated to the 

𝑗𝑡ℎ segment 

- 

𝑆𝑡𝑜𝑡𝑎𝑙 Total flowrate of added pure solvent, summed 

over all segments 

ml/min 



SSE Sum of the squared errors varies 

𝑢𝑥 Average velocity in the x-direction m/s 

𝑉𝑓𝑒𝑒𝑑 Saturated mother liquor at flowrate ml/min 

𝑉𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Volumetric flowrate of entire solution stream, 

containing both solvent and antisolvent 

ml/min 

𝑥 External coordinate; distance along a crystallizer 

segment 

m 

𝑋𝐻2𝑂 Mass fraction of water - 

𝑥𝑡𝑜𝑡𝑎𝑙 Total length of the entire crystallizer m 

𝑌 Crystal mass yield - 

Greek Symbols   

γ Dilution correction factor - 

𝛿(𝐿 − 𝐿0) Dirac delta function, with pulse centered at 𝐿0 m-1 

𝛿𝑠𝑒𝑒𝑑  Mean of seed distribution Gaussian bell curve m 

𝜆 Seed mass loading % 

𝜇𝑘 𝑘𝑡ℎ-moment of the crystal size distribution mk/kg solution 

𝜌𝑐 Density of solid API crystals kg/m3 

𝜌𝐸𝑡𝑂𝐻 Density of ethanol kg/m3 

𝜌𝐻2𝑂 Density of water kg/m3 

𝜌𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Density of solution kg/m3 

𝜎 Supersaturation ratio - 

𝜏𝑗 Residence time in the 𝑗𝑡ℎ segment s 

𝜏𝑡𝑜𝑡𝑎𝑙 Total residence time of the crystallizer array s 

𝜑 Dissolution acceleration - 

𝜔𝑠𝑒𝑒𝑑 Standard deviation of seed distribution Gaussian 

bell curve 

m 
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