24 research outputs found

    High-Throughput Venomics

    Get PDF
    In this study, we present high-throughput (HT) venomics, a novel analytical strategy capable of performing a full proteomic analysis of a snake venom within 3 days. This methodology comprises a combination of RP-HPLC-nanofractionation analytics, mass spectrometry analysis, automated in-solution tryptic digestion, and high-throughput proteomics. In-house written scripts were developed to process all the obtained proteomics data by first compiling all Mascot search results for a single venom into a single Excel sheet. Then, a second script plots each of the identified toxins in so-called Protein Score Chromatograms (PSCs). For this, for each toxin, identified protein scores are plotted on the y-axis versus retention times of adjacent series of wells in which a toxin was fractionated on the x-axis. These PSCs allow correlation with parallel acquired intact toxin MS data. This same script integrates the PSC peaks from these chromatograms for semiquantitation purposes. This new HT venomics strategy was performed on venoms from diverse medically important biting species; Calloselasma rhodostoma, Echis ocellatus, Naja pallida, Bothrops asper, Bungarus multicinctus, Crotalus atrox, Daboia russelii, Naja naja, Naja nigricollis, Naja mossambica, and Ophiophagus hannah. Our data suggest that high-throughput venomics represents a valuable new analytical tool for increasing the throughput by which we can define venom variation and should greatly aid in the future development of new snakebite treatments by defining toxin composition

    Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection : a Prospective Case-Control Study

    Get PDF
    In recent years, preclinical studies have illustrated the potential role of intestinal bacterial composition in the risk of stroke and post-stroke infections. The results of these studies suggest that bacteria capable of producing volatile metabolites, including trimethylamine-N-oxide (TMAO) and butyrate, play opposing, yet important roles in the cascade of events leading to stroke. However, no large-scale studies have been undertaken to determine the abundance of these bacterial communities in stroke patients and to assess the impact of disrupted compositions of the intestinal microbiota on patient outcomes. In this prospective case-control study, rectal swabs from 349 ischemic and hemorrhagic stroke patients (median age, 71 years; IQR: 67-75) were collected within 24 h of hospital admission. Samples were subjected to 16S rRNA amplicon sequencing and subsequently compared with samples obtained from 51 outpatient age- and sex-matched controls (median age, 72 years; IQR, 62-80) with similar cardiovascular risk profiles but without active signs of stroke. Plasma protein biomarkers were analyzed using a combination of nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Alpha and beta diversity analyses revealed higher disruption of intestinal communities during ischemic and hemorrhagic stroke compared with non-stroke matched control subjects. Additionally, we observed an enrichment of bacteria implicated in TMAO production and a loss of butyrate-producing bacteria. Stroke patients displayed two-fold lower plasma levels of TMAO than controls (median 1.97 vs 4.03 mu M, Wilcoxonp <0.0001). Finally, lower abundance of butyrate-producing bacteria within 24 h of hospital admission was an independent predictor of enhanced risk of post-stroke infection (odds ratio 0.77,p = 0.005), but not of mortality or functional patient outcome. In conclusion, aberrations in trimethylamine- and butyrate-producing gut bacteria are associated with stroke and stroke-associated infections.Peer reviewe

    Zebrafish Larvae Are a Suitable Model to Investigate the Metabolic Phenotype of Drug-Induced Renal Tubular Injury

    Get PDF
    Prevention and treatment of drug-induced renal injury (DIRI) rely on the availability of sensitive and specific biomarkers of early kidney injury and predictive animal models of human pathophysiology. This study aimed to evaluate the potential of zebrafish larvae as translational model in metabolic profiling of DIRI. Zebrafish larvae were exposed to the lethal concentration for 10% of the larvae (LC10) or ½ LC10 of gentamicin, paracetamol and tenofovir as tenofovir disoproxil fumarate (TDF) and tenofovir (TFV). Metabolites were extracted from whole larvae and analyzed by liquid chromatography-mass spectrometry. Principal component analysis showed that drug exposition to the LC10 of paracetamol, TFV, and TDF was the main source of the variance of the data. To identify the metabolites responsible for the toxic effects of the drugs, partial least squares discriminant analyses were built between the LC10 and ½ LC10 for each drug. Features with variable importance in projection&gt; 1.0 were selected and Venn diagrams were built to differentiate between the common and drug specific metabolites of DIRI. Creatine, tyrosine, glutamine, guanosine, hypoxanthine were identified as common metabolites, adenosine and tryptophan as paracetamol-specific and xanthine and oxidized glutathione as tenofovir-specific. Those metabolic changes can be associated with alterations in energy metabolism, xenobiotic detoxification and protein catabolism, all described in the human pathophysiology of DIRI. Thus, zebrafish proved to be a suitable model to characterize the metabolic changes associated with DIRI. This information can be useful to early diagnose DIRI and to improve our knowledge on the mechanisms of DIRI

    Single Quadrupole Multiple Reaction Monitoring Q-MRM enables Quantitative Mass Spectrometry

    No full text
    A single quadrupole combined with enhanced in-source fragmentation/annotation (EISA) was used to perform multiple reaction monitoring (Q-MRM) for quantitative mass spectrometry analysis. EISA amplifies fragmentation of traditional soft electrospray ionization to produce fragment ions that have been found to be identical to those generated in tandem mass spectrometry. We have combined EISA fragmentation data with criteria established by the European Union Commission Directive 2002/657/EC for electron ionization single quadrupole quantitative analysis to perform quantitative Q-MRM experiments. These experiments were performed on multiple types of complex samples that included a mixture of 50 standards, as well as cell and plasma extracts. The dynamic range for Q-MRM quantitative analysis was comparable to triple quadrupole multiple reaction monitoring (QqQ-MRM) analyses at up to 5 orders of magnitude with the cell and plasma extracts showing similar matrix effects across both platforms. Amino acid and fatty acid measurements performed from certified NIST 1950 plasma with isotopically labelled standards demonstrated Q-MRM accuracy in the range of 91-110% for the amino acids, 76-129% for the fatty acids, and good precision (coefficient of variation < 10%). In order to enhance specificity, a newly developed Correlated Ion Monitoring (CIM) algorithm was designed to facilitate these analyses. CIM autonomously processes, aligns, filters, and compiles multiple ions within one chromatogram enabling both precursor and in-source fragment ions to be correlated within a single chromatogram, also enabling the detection of co-eluting species based on precursor and fragment ion ratios. Q-MRM and CIM with single quadrupole instrumentation has been designed as an alternative to QqQ-MRM technology by correlating precursor and fragment ions to facilitate high sensitivity Q-MRM quantitative analysis on existing instrumentation that are generally inexpensive, easy to operate, and technically less complex. @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:3 0 0 0 1 0;}p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0in; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman",serif; mso-fareast-font-family:"Times New Roman";}.MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-size:11.0pt; mso-ansi-font-size:11.0pt; mso-bidi-font-size:11.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:DengXian; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:ZH-CN;}.MsoPapDefault {mso-style-type:export-only; margin-bottom:8.0pt; line-height:107%;}div.WordSection1 {page:WordSection1;}</p

    Amino acid profiling in urine by capillary zone electrophoresis—- mass spectrometry

    No full text
    Abstract Analysis of amino acid profiles in urine and plasma is an essential part of modern clinical diagnostic routine. Here we present an approach for the analysis of amino acids in urine by capillary electrophoresis/time-of-flight (TOF) mass spectrometry. At first a method combining improved separation, high dynamic range, and high sensitivity is presented. Detection limits in the mid nM-range are achieved through the use of pH-mediated stacking injection in combination with modern TOF detection technology. The method can be easily applied to detect differences in the amino acid profile in urine in a clinical context. Moreover, beside amino acids low molecular weight amines, peptides and related metabolites can be profiled. As a proof of concept, urine samples from patients suffering from osteoarthritis have been analyzed. Finally, the introduction of multivariate data analysis in the work flow was evaluated on spiked urine samples and real clinical material

    Biliary Microbiota and Bile Acid Composition in Cholelithiasis

    Get PDF
    Background. A functional interplay between BAs and microbial composition in gut is a well-documented phenomenon. In bile, this phenomenon is far less studied, and with this report, we describe the interactions between the BAs and microbiota in this complex biological matrix. Methodology. Thirty-seven gallstone disease patients of which twenty-one with Opisthorchis felineus infection were enrolled in the study. The bile samples were obtained during laparoscopic cholecystectomy for gallstone disease operative treatment. Common bile acid composition was measured by LC-MS/MS. Gallbladder microbiota were previously analyzed with 16S rRNA gene sequencing on Illumina MiSeq platform. The associations between bile acid composition and microbiota were analyzed. Results. Bile acid signature and Opisthorchis felineus infection status exert influence on beta-diversity of bile microbial community. Direct correlations were found between taurocholic acid, taurochenodeoxycholic acid concentrations, and alpha-diversity of bile microbiota. Taurocholic acid and taurochenodeoxycholic acid both show positive associations with the presence of Chitinophagaceae family, Microbacterium and Lutibacterium genera, and Prevotella intermedia. Also, direct associations were identified for taurocholic acid concentration and the presence of Actinomycetales and Bacteroidales orders, Lautropia genus, Jeotgalicoccus psychrophilus, and Haemophilus parainfluenzae as well as for taurochenodeoxycholic acid and Acetobacteraceae family and Sphingomonas genus. There were no differences in bile acid concentrations between O. felineus-infected and noninfected patients. Conclusions/Significance. Associations between diversity, taxonomic profile of bile microbiota, and bile acid levels were evidenced in patients with cholelithiasis. Increase of taurochenodeoxycholic acid and taurocholic acid concentration correlates with bile microbiota alpha-diversity and appearance of opportunistic pathogens

    Effect of Suboptimal Sampling and Handling Conditions on Urinary Metabolic Profiles

    No full text
    Collection and storage of the clinical samples are crucial factors in the metabolomic workflows. However, with the expansion of metabolomics into the clinical domain and towards the large field studies in particular, the high sampling/storage standards practiced in the tightly controlled hospital environment cannot always be guaranteed. Thus, if the samples are exposed to suboptimal conditions and their integrity is compromised should they be discarded? Or such samples retain physiologically relevant information and can be of use? To explore the options we analyzed 117 urine samples that were collected under two different conditions. Part of the samples were collected within a clinical setting under optimal conditions, another part by patients at home and shipped to the hospital by mail. All samples were analyzed by liquid chromatography–mass spectrometry (LC–MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. Multivariate modelling revealed clear differences between the two sampling conditions for both LC–MS and 1H NMR data sets. However, the differential metabolites appeared to be platform-specific, which clearly emphasizes the complementary nature of both techniques. The analysis of the samples that were exposed to suboptimal conditions revealed that age and body mass index remain as dominant traits of the metabolic profile, although their influence was stronger for LC–MS data. In conclusion, although it is important to ensure adequate sample collection and storage conditions, urine samples that do not fulfil these criteria still retain valuable physiological information and as such thus they could be of use for metabolomic studies when no alternative is available

    Metabolic liver inflammation in obesity does not robustly decrease hepatic and circulating CETP

    No full text
    Background and aims: We recently showed that plasma cholesteryl ester transfer protein (CETP) is mainly derived from VSIG4-positive Kupffer cells. Activation of these cells by the bacterial endotoxin lipopolysaccharide (LPS) strongly decreases CETP expression. As Kupffer cell activation plays a detrimental role in the progression of non-alcoholic fatty liver disease (NAFLD), we aimed to study if metabolic liver inflammation is also associated with a decrease in hepatic and circulating CETP. Methods: We collected plasma and liver biopsy samples at various stages of NAFLD from 93 obese individuals who underwent bariatric surgery. Liver lobular inflammation was histologically determined, and liver CETP expression, CETP positive cells, circulating CETP concentrations, and liver VSIG4 expression were quantified. Results: Mean (SD) plasma CETP concentration was 2.68 (0.89) mu g/mL. In the presence of liver inflammation, compared to the absence of pathology, the difference in hepatic CETP expression was -0.03 arbitrary units (95% CI -0.26, 0.20), the difference in number of hepatic CETP positive cells (range 11-140 per mm(2)) was -20.0 per mm(2) (95% CI -41.6, 1.9), and the difference in plasma CETP was -0.35 mu g/mL (95% CI -0.80, 0.10). Hepatic VSIG4 expression was not associated with liver inflammation (0.00; 95% CI -0.15, 0.15). Conclusions: We found no strong evidence for a strong negative association between metabolic liver inflammation and CETP-related outcomes in obese individuals, although we observed consistent trends. These data indicate that metabolic liver inflammation does not mimic the strong effects of LPS on the hepatic expression and production of CETP by Kupffer cells. (C) 2018 The Authors. Published by Elsevier B.V
    corecore