5 research outputs found

    CTIP2, une protéine multifonctionnelle : Implication en physiopathologie cellulaire et en thérapeutique

    Get PDF
    The transcription factor CTIP2 (BCL11B) is a multifunctional protein involved in numerous cell physiological processes. To date, many molecular mechanisms underlying this process have been discovered, which highlighted the importance of the epigenetic regulation of genes and the regulation of the elongation factor P-TEFb. Furthermore studies of the deregulation of CTIP2 showed the association of CTIP2 to numerous pathologies including cancer and cardiac hypertrophy. A better comprehension of the physiopathology of these diseases might lead to the design of therapeutical strategies intending to prevent CTIP2 deregulation. Moreover, CTIP2 and its associated proteins constitute potential targets in strategies aiming to reduce and/or purge HIV-1 cell reservoirs. English title : CTIP2, a multifunctional protein: cellular physiopathology and therapeutic implication

    國立臺灣大學圖書館田中文庫植物圖譜

    No full text
    CTIP2 is a key transcriptional regulator involved in numerous physiological functions. Initial works have shown the importance of CTIP2 in the establishment and persistence of HIV latency in microglial cells, the main latent/quiescent viral reservoir in the brain. Recent studies have highlighted the importance of CTIP2 in several other pathologies, such as cardiac hypertrophy and various types of human malignancies. Targeting CTIP2 may therefore constitute a new approach in the treatment of these pathologies

    HMGA1 recruits CTIP2-repressed P-TEFb to the HIV-1 and cellular target promoters

    No full text
    International audienceActive positive transcription elongation factor b (P-TEFb) is essential for cellular and human im-munodeficiency virus type 1 (HIV-1) transcription elongation. CTIP2 represses P-TEFb activity in a complex containing 7SK RNA and HEXIM1. Recently, the inactive 7SK/P-TEFb small nuclear RNP (snRNP) has been detected at the HIV-1 core promoter as well as at the promoters of cellular genes, but a recruiting mechanism still remains unknown to date. Here we show global synergy between CTIP2 and the 7SK-binding chromatin master-regulator HMGA1 in terms of P-TEFb– dependent endogenous and HIV-1 gene expression regulation. While CTIP2 and HMGA1 concordingly repress the expression of cellular 7SK-dependent P-TEFb targets, the simultaneous knock-down of CTIP2 and HMGA1 also results in a boost in Tat-dependent and independent HIV-1 promoter activity. Chromatin immunoprecipitation experiments reveal a significant loss of CTIP2/7SK/P-TEFb snRNP recruitment to cellular gene promoters and the HIV-1 promoter on HMGA1 knock-down. Our findings not only provide insights into a recruiting mechanism for the inactive 7SK/P-TEFb snRNP, but may also contribute to a better understanding of viral latency
    corecore