556 research outputs found

    Total reaction cross sections for neutron-nucleus scattering

    Get PDF
    Neutron total reaction cross sections at 45, 50, 55, 60, 65, and 75 MeV from nuclei 12C, 28Si, 56Fe, 90Zr, and 208Pb have been measured and are compared with (microscopic) optical model predictions. The optical potentials were obtained in coordinate space by full folding effective nucleon-nucleon interactions with realistic nuclear ground state density matrices. Good to excellent agreement is found.Comment: 5 pages, 1 figure, RevTeX

    Degeneracies when T=0 Two Body Matrix Elements are Set Equal to Zero and Regge's 6j Symmetry Relations

    Full text link
    The effects of setting all T=0 two body interaction matrix elements equal to a constant (or zero) in shell model calculations (designated as =0=0) are investigated. Despite the apparent severity of such a procedure, one gets fairly reasonable spectra. We find that using =0=0 in single j shell calculations degeneracies appear e.g. the I=1/2−I={1/2} ^{-} and 13/2−{13/2}^{-} states in 43^{43}Sc are at the same excitation energies; likewise the I=32+3_{2}^{+},72+7_{2}^{+},91+^{+}_{1} and 101+^{+}_{1} states in 44^{44}Ti. The above degeneracies involve the vanishing of certain 6j and 9j symbols. The symmetry relations of Regge are used to explain why these vanishings are not accidental. Thus for these states the actual deviation from degeneracy are good indicators of the effects of the T=0 matrix elements. A further indicator of the effects of the T=0 interaction in an even - even nucleus is to compare the energies of states with odd angular momentum with those that are even

    Full 0ℏω0\hbar\omega shell model calculation of the binding energies of the 1f7/21f_{7/2} nuclei

    Full text link
    Binding energies and other global properties of nuclei in the middle of the pfpf shell, such as M1, E2 and Gamow-Teller sum rules, have been obtained using a new Shell Model code (NATHAN) written in quasi-spin formalism and using a j−jj-j-coupled basis. An extensive comparison is made with the recently available Shell Model Monte Carlo results using the effective interaction KB3. The binding energies for -nearly- all the 1f7/21f_{7/2} nuclei are compared with the measured (and extrapolated) results.Comment: 7 page

    The Wisconsin-IIASA Set of Energy/Environment (WISE) Models for Regional Planning and Management: An Overview

    Get PDF
    This report presents an overview of the analytical framework and quantitative methods used in the IIASA case studies on Regional Energy/Environment Management and Planning. Its purpose is to summarize the structure of the models, to provide a complete listing of the sources of more detailed model and data descriptions, and to indicate how the models are integrated to provide a foundation for regional energy/environment policy maker analysis. The audience for the report includes managers, planners, technical advisors, and modelers. The set of models used in the research project encompasses socioeconomic links to the energy system; energy demand in the residential, industrial, commercial/service, agricultural and transportation sectors; the energy supply sector, environmental impacts associated with the energy system; and policy makers' preferences. The report gives a brief description of the purpose and general structure of each model, data requirements, examples of input and output, and model limitations. As a whole, the models integrate information about energy flows in a region to simulate the energy system and its relationship to other regional variables, e.g., demographic and economic trends and the environment

    First order optical potentials and 25 to 40 MeV proton elastic scattering

    Get PDF
    The differential cross sections and analyzing powers from the elastic scattering of 25 and 40 MeV protons from many nuclei have been studied. Analyses have been made using a fully microscopic model of proton-nucleus scattering seeking to establish a means appropriate for use in analyses of radioactive beam scattering from hydrogen with ion energies 25A and 40A MeV.Comment: 9 pages, RevTeX, 4 figure

    Effective interaction for pf-shell nuclei

    Full text link
    An effective interaction is derived for use in the full pf basis. Starting from a realistic G-matrix interaction, 195 two-body matrix elements and 4 single-particle energies are determined by fitting to 699 energy data in the mass range 47 to 66. The derived interaction successfully describes various structures of pf-shell nuclei. As examples, systematics of the energies of the first 2+ states in the Ca, Ti, Cr, Fe, and Ni isotope chains and energy levels of 56,57,58Ni are presented. The appearance of a new magic number 34 is seen.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Angle-integrated measurements of the 26Al (d, n)27Si reaction cross section: a probe of spectroscopic factors and astrophysical resonance strengths

    Get PDF
    Measurements of angle-integrated cross sections to discrete states in 27Si have been performed studying the 26Al (d, n) reaction in inverse kinematics by tagging states by their characteristic Îł \gamma -decays using the GRETINA array. Transfer reaction theory has been applied to derive spectroscopic factors for strong single-particle states below the proton threshold, and astrophysical resonances in the 26Al (p,Îł \gamma) 27Si reaction. Comparisons are made between predictions of the shell model and known characteristics of the resonances. Overall very good agreement is obtained, indicating this method can be used to make estimates of resonance strengths for key reactions currently largely unconstrained by experiment

    Garvey-Kelson Relations for Nuclear Charge Radii

    Get PDF
    The Garvey-Kelson relations (GKRs) are algebraic expressions originally developed to predict nuclear masses. In this letter we show that the GKRs provide a fruitful framework for the prediction of other physical observables that also display a slowly-varying dynamics. Based on this concept, we extend the GKRs to the study of nuclear charge radii. The GKRs are tested on 455 out of the approximately 800 nuclei whose charge radius is experimentally known. We find a rms deviation between the GK predictions and the experimental values of only 0.01 fm. This should be contrasted against some of the most successful microscopic models that yield rms deviations almost three times as large. Predictions - with reliable uncertainties - are provided for 116 nuclei whose charge radius is presently unknown.Comment: 4 pages and 3 figure

    Microscopic model analyses of proton scattering from 12C, 20Ne, 24Mg, 28Si and 40Ca

    Full text link
    Differential cross sections and analyzing powers for elastic scattering from, and for inelastic proton scattering to a set of 21+2^+_1 states in, 12{}^{12}C, 20{}^{20}Ne, 24{}^{24}Mg, 28{}^{28}Si and 40{}^{40}Ca, and for a set of energies between 35 to 250 MeV, have been analyzed. A gg-folding model has been used to determine optical potentials and a microscopic distorted wave approximation taken to analyze the inelastic data. The effective nucleon-nucleon interactions used to specify the optical potentials have also been used as the transition operators in the inelastic scattering processes. Shell and large space Hartree-Fock models of structure have been used to describe the nuclear states.Comment: 27 pages, 18 figure

    Study of the nucleon-induced preequilibrium reactions in terms of the Quantum Molecular Dynamics

    Get PDF
    The preequilibrium (nucleon-in, nucleon-out) angular distributions of 27^{27}Al, 58^{58}Ni and 90^{90}Zr have been analyzed in the energy region from 90 to 200 MeV in terms of the Quantum Moleculear Dynamics (QMD) theory. First, we show that the present approach can reproduce the measured (p,xp') and (p,xn) angular distributions leading to continuous final states without adjusing any parameters. Second, we show the results of the detailed study of the preequilibrium reaction processes; the step-wise contribution to the angular distribution, comparison with the quantum-mechanical Feshbach-Kerman-Koonin theory, the effects of momentum distribution and surface refraction/reflection to the quasifree scattering. Finally, the present method was used to assess the importance of multiple preequilibrium particle emission as a function of projectile energy up to 1 GeV.Comment: 22pages, Revex is used, 10 Postscript figures are available by request from [email protected]
    • 

    corecore