178 research outputs found

    A reassortant H9N2 influenza virus containing 2009 pandemic H1N1 internal-protein genes acquired enhanced pig-to-pig transmission after serial passages in swine

    Get PDF
    Avian H9N2 and 2009 pandemic H1N1 (pH1N1) influenza viruses can infect pigs and humans, raising the concern that H9N2: pH1N1 reassortant viruses could emerge. Such reassortants demonstrated increased replication and transmissibility in pig, but were still inefficient when compared to pH1N1. Here, we evaluated if a reassortant virus containing the hemagglutinin and neuraminidase of A/quail/ Hong Kong/G1/1997 (H9N2) in the A/California/04/2009 (pH1N1) backbone could become better adapted to pigs by serial passaging. The tropism of the original H9N2: pH1N1 (P0) virus was restricted to the nasal mucosa, with no virus detected in the trachea or lungs. Nevertheless, after seven passages the H9N2: pH1N1 (P7) virus replicated in the entire respiratory tract. We also compared the transmissibility of H9N2: pH1N1 (P0), H9N2: pH1N1 (P7) and pH1N1. While only 2/6 direct-contact pigs showed nasal virus excretion of H9N2: pH1N1 (P0) >= five days, 4/6 direct-contact animals shed the H9N2: pH1N1 (P7). Interestingly, those four animals shed virus with titers similar to those of the pH1N1, which readily transmitted to all six contact animals. The broader tissue tropism and the increased post-transmission replication after seven passages were associated with the HA-D225G substitution. Our data demonstrate that the pH1N1 internal-protein genes together with the serial passages favour H9N2 virus adaptation to pigs

    A glycoprotein subunit vaccine elicits a strong Rift Valley fever virus neutralizing antibody response in sheep

    Get PDF
    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in non-endemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, N-terminus glycoprotein (Gn) and C-terminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 μg of each vaccine immunogen adjuvanted with montanide ISA25, and at day 21 post-vaccination, each animal received a second dose of the same vaccine. The vaccine induced strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). Plaque reduction neutralization test (PRNT80) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1,280. Further, all animals tested positive for neutralizing antibodies at day 328 pv. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible, and represents a promising vaccine platform for RVFV infection in susceptible species

    Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines

    Get PDF
    Citation: Gaudreault, N. N., Indran, S. V., Bryant, P. K., Richt, J. A., & Wilson, W. C. (2015). Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Frontiers in Microbiology, 6(JUN). doi:10.3389/fmicb.2015.00664Rift Valley fever virus (RVFV) causes disease outbreaks across Africa and the Arabian Peninsula, resulting in high morbidity and mortality among young domestic livestock, frequent abortions in pregnant animals, and potentially severe or fatal disease in humans. The possibility of RVFV spreading to the United States or other countries worldwide is of significant concern to animal and public health, livestock production, and trade. The mechanism for persistence of RVFV during inter-epidemic periods may be through mosquito transovarial transmission and/or by means of a wildlife reservoir. Field investigations in endemic areas and previous in vivo studies have demonstrated that RVFV can infect a wide range of animals, including indigenous wild ruminants of Africa. Yet no predominant wildlife reservoir has been identified, and gaps in our knowledge of RVFV permissive hosts still remain. In North America, domestic goats, sheep, and cattle are susceptible hosts for RVFV and several competent vectors exist. Wild ruminants such as deer might serve as a virus reservoir and given their abundance, wide distribution, and overlap with livestock farms and human populated areas could represent an important risk factor. The objective of this study was to assess a variety of cell lines derived from North American livestock and wildlife for susceptibility and permissiveness to RVFV. Results of this study suggest that RVFV could potentially replicate in native deer species such as white-tailed deer, and possibly a wide range of non-ruminant animals. This work serves to guide and support future animal model studies and risk model assessment regarding this high-consequence zoonotic pathogen. © 2015 Gaudreault, Indran, Bryant, Richt and Wilson

    Updated distribution and host records for the argasid tick Ornithodoros (Pavlovskyella) zumpti : a potential vector of African swine fever virus in South Africa

    Get PDF
    African swine fever virus (ASFV) causes a lethal and contagious disease of domestic pigs. In South Africa, the virus historically circulated in warthogs and ornithodorid ticks that were only found in warthog burrows in the north of the country. Regulations implemented in 1935 to prevent transfer of infected animals or products to the south initially proved effective but from 2016 there have been outbreaks of disease in the south that cannot be traced to transfer of infection from the north. From 1963 there were widespread translocations of warthogs to the south, initially from a source considered to be free of ornithodorid ticks. We undertook to determine whether sylvatic circulation of ASFV occurs in the south, including identification of potential new vectors, through testing extralimital warthogs for antibody and ticks for virus. Results of testing warthogs for antibody and other species of ticks for virus will be presented separately. Here we report finding Ornithodoros (Pavlovskyella) zumpti ticks in warthog burrows for the first time. This occurred in the Eastern Cape Province (ECP) in 2019. Since African swine fever was recognised in the ECP for the first time in 2020 and outbreaks of the disease in domestic pigs continue to occur there, priority should be given to determining the distribution range and vector potential of O. (P.) zumpti for ASFV.The project was supported by a research contract from Kansas State University and a grant was awarded by the South African Agricultural Sector Education and Training Authority (AgriSETA) to the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria (UP) as well as National Bio and Agro-defense Facility (NBAF) Transition funds from the State of Kansas, the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health and the Department of Homeland Security Center of Excellence for Emerging and Zoonotic Animal Diseases.http://www.ojvr.orgam2022Veterinary Tropical Disease

    Rift Valley fever virus structural and nonstructural proteins: recombinant protein expression and immunoreactivity against antisera from sheep

    Get PDF
    The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA)

    Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses

    Get PDF
    Citation: Balzli, C., Lager, K., Vincent, A., Gauger, P., Brockmeier, S., Miller, L., . . . Swayne, D. E. (2016). Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses. Influenza and other Respiratory Viruses. doi:10.1111/irv.12386Background: The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Objectives: Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Methods: Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT-PCR and seroconversion data. Results: Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT-PCR-positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. Conclusions: LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human-zoonotic LPAI virus dynamics. © 2016 John Wiley & Sons Ltd

    Molecular Basis of Efficient Replication and Pathogenicity of H9N2 Avian Influenza Viruses in Mice

    Get PDF
    H9N2 subtype avian influenza viruses (AIVs) have shown expanded host range and can infect mammals, such as humans and swine. To date the mechanisms of mammalian adaptation and interspecies transmission of H9N2 AIVs remain poorly understood. To explore the molecular basis determining mammalian adaptation of H9N2 AIVs, we compared two avian field H9N2 isolates in a mouse model: one (A/chicken/Guangdong/TS/2004, TS) is nonpathogenic, another one (A/chicken/Guangdong/V/2008, V) is lethal with efficient replication in mouse brains. In order to determine the basis of the differences in pathogenicity and brain tropism between these two viruses, recombinants with a single gene from the TS (or V) virus in the background of the V (or TS) virus were generated using reverse genetics and evaluated in a mouse model. The results showed that the PB2 gene is the major factor determining the virulence in the mouse model although other genes also have variable impacts on virus replication and pathogenicity. Further studies using PB2 chimeric viruses and mutated viruses with a single amino acid substitution at position 627 [glutamic acid (E) to lysine, (K)] in PB2 revealed that PB2 627K is critical for pathogenicity and viral replication of H9N2 viruses in mouse brains. All together, these results indicate that the PB2 gene and especially position 627 determine virus replication and pathogenicity in mice. This study provides insights into the molecular basis of mammalian adaptation and interspecies transmission of H9N2 AIVs

    A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep

    Get PDF
    Citation: Faburay, B., Wilson, W. C., Gaudreault, N. N., Davis, A. S., Shivanna, V., Bawa, B., . . . Richt, J. A. (2016). A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Scientific Reports, 6, 12. doi:10.1038/srep27719Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n=5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vaccinated sheep, as evidenced by prevention of viremia, fever and absence of RVFV-associated histopathological lesions. We conclude that the subunit vaccine platform represents a promising strategy for the prevention and control of RVFV infections in susceptible hosts

    Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey

    Get PDF
    Citation: Yilmaz, H., Altan, E., Cizmecigil, U. Y., Gurel, A., Ozturk, G. Y., Bamac, O. E., . . . Turan, N. (2016). Phylogeny and S1 Gene Variation of Infectious Bronchitis Virus Detected in Broilers and Layers in Turkey. Avian Diseases, 60(3), 596-602. doi:10.1637/11346-120915-Reg.1The avian coronavirus infectious bronchitis virus (AvCoV-IBV) is recognized as an important global pathogen because new variants are a continuous threat to the poultry industry worldwide. This study investigates the genetic origin and diversity of AvCoV-IBV by analysis of the S1 sequence derived from 49 broiler flocks and 14 layer flocks in different regions of Turkey. AvCoV-IBV RNA was detected in 41 (83.6%) broiler flocks and nine (64.2%) of the layer flocks by TaqMan real-time RT-PCR. In addition, AvCoV-IBV RNA was detected in the tracheas 27/30 (90%), lungs 31/49 (62.2%), caecal tonsils 7/22 (31.8%), and kidneys 4/49 (8.1%) of broiler flocks examined. Pathologic lesions, hemorrhages, and mononuclear infiltrations were predominantly observed in tracheas and to a lesser extent in the lungs and a few in kidneys. A phylogenetic tree based on partial S1 sequences of the detected AvCoV-IBVs (including isolates) revealed that 1) viruses detected in five broiler flocks were similar to the IBV vaccines Ma5, H120, M41; 2) viruses detected in 24 broiler flocks were similar to those previously reported from Turkey and to Israel variant-2 strains; 3) viruses detected in seven layer flocks were different from those found in any of the broiler flocks but similar to viruses previously reported from Iran, India, and China (similar to Israel variant-1 and 4/91 serotypes); and 4) that the AVCoV-IBV, Israeli variant-2 strain, found to be circulating in Turkey appears to be undergoing molecular evolution. In conclusion, genetically different AvCoV-IBV strains, including vaccine-like strains, based on their partial S1 sequence, are circulating in broiler and layer chicken flocks in Turkey and the Israeli variant-2 strain is undergoing evolution. © 2016 American Association of Avian Pathologists

    Transmission of scrapie prions to primate after an extended silent incubation period

    Get PDF
    Citation: Comoy, E. E., Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand, V., . . . Deslys, J. P. (2015). Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports, 5. doi:10.1038/srep11573Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie
    • …
    corecore