1,060 research outputs found

    Supermassive Black Holes Then and Now

    Get PDF
    Recent surveys suggest that most or all normal galaxies host a massive black hole with 1/100 to 1/1000 of the visible mass of the spheroid of the galaxy. Various lines of argument suggest that these galaxies have merged at least once in our past lightcone, and that the black holes have also merged. This leads to a merger rate of massive black holes of about 1/\yrs.Comment: 7 pages, to appear in The Proceedings of the Second International LISA Symposium on Graviational Waves, ed. W. Folkne

    NGC 1300 Dynamics: II. The response models

    Full text link
    We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC 1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp\Omega_p pattern speed values. Our goal is to discover the geometries and the Ωp\Omega_p supporting specific morphological features of NGC 1300. For this purpose we use the method of response models. In order to compare the images of NGC 1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC 1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp16\Omega_p\approx16\ksk and Ωp22\Omega_p\approx22\ksk are able to reproduce efficiently certain morphological features of NGC 1300, with each one having its advantages and drawbacks.Comment: 13 pages, 10 figures, accepted for publication in MNRA

    Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei

    Get PDF
    Emission-line variability data on NGC 5548 argue strongly for the existence of a mass of order 7 x 10^7 solar masses within the inner few light days of the nucleus in the Seyfert 1 galaxy NGC 5548. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, and these determinations are combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. The data for several different emission lines spanning an order of magnitude in distance from the central source show the expected V proportional to r^{-1/2} correlation and are consistent with a single value for the mass.Comment: 9 pages, 2 Figures. accepted by ApJ Letter

    Hypervelocity binary stars: smoking gun of massive binary black holes

    Full text link
    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.Comment: 5 pages, 3 figures, shortened version, ApJL in pres

    Evolution of Supermassive Black Holes from Cosmological Simulations

    Full text link
    The correlations between the mass of supermassive black holes and properties of their host galaxies are investigated through cosmological simulations. Black holes grow from seeds of 100 solar masses inserted into density peaks present in the redshift range 12-15. Seeds grow essentially by accreting matter from a nuclear disk and also by coalescences resulting from merger episodes. At z=0, our simulations reproduce the black hole mass function and the correlations of the black hole mass both with stellar velocity dispersion and host dark halo mass. Moreover, the evolution of the black hole mass density derived from the present simulations agrees with that derived from the bolometric luminosity function of quasars, indicating that the average accretion history of seeds is adequately reproduced . However, our simulations are unable to form black holes with masses above 109M10^9 M_{\odot} at z6z\sim 6, whose existence is inferred from the bright quasars detected by the Sloan survey in this redshift range.Comment: Talk given at the International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2009), Maresias, Brazil. to be published in the International Journal of Modern Physics

    Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation

    Get PDF
    Emission-line variability data for Seyfert 1 galaxies provide strong evidence for the existence of supermassive black holes in the nuclei of these galaxies, and that the line-emitting gas is moving in the gravitational potential of that black hole. The time-delayed response of the emission lines to continuum variations is used to infer the size of the line-emitting region, which is then combined with measurements of the Doppler widths of the variable line components to estimate a virial mass. In the case of the best-studied galaxy, NGC 5548, various emission lines spanning an order of magnitude in distance from the central source show the expected velocity proportional to inverse square root of the distance correlation between distance and line width, and are thus consistent with a single value for the mass. Two other Seyfert galaxies, NGC 7469 and 3C 390.3, show a similar relationship. We compute the ratio of luminosity to mass for these three objects and the narrow-line Seyfert 1 galaxy NGC 4051 and find that that the gravitational force on the line-emitting gas is much stronger than radiation pressure. These results strongly support the paradigm of gravitationally bound broad emission-line region clouds.Comment: 10 pages, 2 figures, Accepted for publication in Astrophysical Journal Letter

    Measuring the Radiative Histories of QSOs with the Transverse Proximity Effect

    Full text link
    Since the photons that stream from QSOs alter the ionization state of the gas they traverse, any changes to a QSO's luminosity will produce outward-propagating ionization gradients in the surrounding intergalactic gas. This paper shows that at redshift z~3 the gradients will alter the gas's Lyman-alpha absorption opacity enough to produce a detectable signature in the spectra of faint background galaxies. By obtaining noisy (S:N~4) low-resolution (~7A) spectra of a several dozen background galaxies in an R~20' field surrounding an isotropically radiating 18th magnitude QSO at z=3, it should be possible to detect any order-of-magnitude changes to the QSO's luminosity over the previous 50--100 Myr and to measure the time t_Q since the onset of the QSO's current luminous outburst with an accuracy of ~5 Myr for t_Q<~50 Myr. Smaller fields-of-view are acceptable for shorter QSO lifetimes. The major uncertainty, aside from cosmic variance, will be the shape and orientation of the QSO's ionization cone. This can be determined from the data if the number of background sources is increased by a factor of a few. The method will then provide a direct test of unification models for AGN.Comment: Accepted for publication in the ApJ. 16 page

    Black Holes and Host Galaxies of NLS1s

    Get PDF
    Recently, reliable mass estimates for the central black holes in AGN became feasible due to emission-line reverberation techniques. Using this method as a calibrator, it is possible to determine black hole masses for a wide range of AGN, in particular NLS1s. Do NLS1s have smaller black holes than ordinary Seyfert 1 galaxies? Are their black holes smaller compared to the sizes of their host galaxies? Do they have larger L/M ratios? Do NLS1s have hotter accretion disks? I confront these questions with accretion disk theory and with the data, showing that the above may well be the case.Comment: Contributed talk presented at the Joint MPE,AIP,ESO workshop on NLS1s, Bad Honnef, Dec. 1999, to appear in New Astronomy Reviews; also available at http://wave.xray.mpe.mpg.de/conferences/nls1-worksho
    corecore