Abstract

We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC 1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp\Omega_p pattern speed values. Our goal is to discover the geometries and the Ωp\Omega_p supporting specific morphological features of NGC 1300. For this purpose we use the method of response models. In order to compare the images of NGC 1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC 1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp16\Omega_p\approx16\ksk and Ωp22\Omega_p\approx22\ksk are able to reproduce efficiently certain morphological features of NGC 1300, with each one having its advantages and drawbacks.Comment: 13 pages, 10 figures, accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions