244 research outputs found

    Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian

    Full text link
    We consider Hamilton Jacobi Bellman equations in an inifinite dimensional Hilbert space, with quadratic (respectively superquadratic) hamiltonian and with continuous (respectively lipschitz continuous) final conditions. This allows to study stochastic optimal control problems for suitable controlled Ornstein Uhlenbeck process with unbounded control processes

    European DEMO divertor target: Operational requirements and material-design interface

    Get PDF
    Recently, an integrated program of conceptual design activities for the European DEMO reactor was launched in the framework of the EUROfusion Consortium, where reliable power handling capability was identified as one of the most critical scientific as well as technological challenges for a DEMO reactor. The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. The DEMO divertor target will have to withstand extreme thermal loads where the local peak heat flux is expected to reach up to 20 MW/m2 during slow transient events in DEMO. To assure sufficient heat removal capability of the divertor target against normal and transient operational scenarios under expected cumulative neutron dose of up to 13 dpa is one of the fundamental engineering challenges imposed on target design. To develop the design of the DEMO divertor and related technologies, an R&D work package 'Divertor' has been set up in this consortium. The subproject 'Target Development' is devoted to the development of the conceptual design and the core technologies of the plasma-facing target. Devising and implementing novel structural heat sink materials (e.g. W/Cu composites) to advanced target design concepts is one of the major objectives of this subproject. In this paper, the underlying design requirements imposed by the envisaged power exhaust goal and the prominent material-design interface issues are discussed. In addition, the candidate design concepts being currently considered are presented together with the related material issues. Finally, the first results achieved so far are presented

    European divertor target concepts for DEMO: Design rationales and high heat flux performance

    Get PDF
    The divertor target plates are the most thermally loaded in-vessel components in a fusion reactor where high heat fluxes are produced on the plasma-facing components (PFCs) by intense plasma bombardment, radiation and nuclear heating. For reliable exhaust of huge thermal power, robust and durable divertor target PFCs with a sufficiently large heat removal capability and lifetime has to be developed. Since 2014 in the framework of the preconceptual design activities of the EUROfusion DEMO project, integrated R&D efforts have been made in the subproject ‘Target development’ of the work package ‘Divertor’ to develop divertor target PFCs for DEMO. Recently, the first R&D phase was concluded where six (partly novel) target PFC concepts were developed and evaluated by means of non-destructive inspections and high-heat-flux fatigue testing. In this paper, the major achievements of the first phase activities in this subproject are presented focusing on the design rationales of the target PFC concepts, technology options employed for small-scale mock-up fabrication and the results of the first round high-heat-flux qualification test campaign. It is reported that the mock-ups of three PFC concepts survived up to 500 loading cycles at 20 MW/mÂČ (with hot water cooling at 130 °C) without any discernable indication of degradation in performance or structural integrity
    • 

    corecore