5,025 research outputs found
Flush-mounted dielectric-loaded axial slot on circular cylinder
The theory, computer program, and numerical results of an investigation of an axial slot antenna on a circular cylinder are discussed. The cylinder is partially coated with a dielectric layer and the antenna radiates through a flush mounted window. The study was conducted to determine the effects of a high temperature dielectric layer on the performance of antennas mounted on a space shuttle. Mathematical models are developed to show the relationships of the parameters. Curves are developed to compare the theoretical and actual far field radiation patterns
Mutual impedance of nonplanar-skew sinusoidal dipoles
The mutual impedance of nonplanar-skew sinusoidal dipoles is presented as a summation of several exponential integrals with complex arguments. Mathematical models are developed to show the near-zone field of the sinusoidal dipole. The mutual impedance of coupled dipoles is expressed as the sum of four monopole-mobopole impedances to simplify the analysis procedure. The subroutines for solving the parameters of the dipoles are discussed
Computer analysis of aircraft and shuttle antennas
Progress on predicting the patterns of high-frequency antennas on aircraft and shuttles is reported. Patterns are presented for an axial slot antenna on a circular cylinder partially coated with a dielectric layer. Results are shown for Omega signal disturbance by a conducting vertical pole
Theoretical study of V antenna characteristics for the ATS-E radio astronomy experiment Final report
V antenna system on ATS-E satellite analyzed for radio astronomy experiment
Computer program for thin-wire structures in a homogeneous conducting medium
A computer program is presented for thin-wire antennas and scatters in a homogeneous conducting medium. The anaylsis is performed in the real or complex frequency domain. The program handles insulated and bare wires with finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, gain, absorption cross section, scattering cross section, echo area and the polarization scattering matrix. The program uses sinusoidal bases and Galerkin's method
Computer Program for Thin Wire Antenna over a Perfectly Conducting Ground Plane
A computer program is presented for a thin-wire antenna over a perfect ground plane. The analysis is performed in the frequency domain, and the exterior medium is free space. The antenna may have finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, and gain. The program uses sinusoidal bases and Galerkin's method
Multilevel principal component analysis (mPCA) in shape analysis: a feasibility study in medical and dental imaging
Background and objective Methods used in image processing should reflect any multilevel structures inherent in the image dataset or they run the risk of functioning inadequately. We wish to test the feasibility of multilevel principal components analysis (PCA) to build active shape models (ASMs) for cases relevant to medical and dental imaging. Methods Multilevel PCA was used to carry out model fitting to sets of landmark points and it was compared to the results of “standard” (single-level) PCA. Proof of principle was tested by applying mPCA to model basic peri-oral expressions (happy, neutral, sad) approximated to the junction between the mouth/lips. Monte Carlo simulations were used to create this data which allowed exploration of practical implementation issues such as the number of landmark points, number of images, and number of groups (i.e., “expressions” for this example). To further test the robustness of the method, mPCA was subsequently applied to a dental imaging dataset utilising landmark points (placed by different clinicians) along the boundary of mandibular cortical bone in panoramic radiographs of the face. Results Changes of expression that varied between groups were modelled correctly at one level of the model and changes in lip width that varied within groups at another for the Monte Carlo dataset. Extreme cases in the test dataset were modelled adequately by mPCA but not by standard PCA. Similarly, variations in the shape of the cortical bone were modelled by one level of mPCA and variations between the experts at another for the panoramic radiographs dataset. Results for mPCA were found to be comparable to those of standard PCA for point-to-point errors via miss-one-out testing for this dataset. These errors reduce with increasing number of eigenvectors/values retained, as expected. Conclusions We have shown that mPCA can be used in shape models for dental and medical image processing. mPCA was found to provide more control and flexibility when compared to standard “single-level” PCA. Specifically, mPCA is preferable to “standard” PCA when multiple levels occur naturally in the dataset
Sinusoidal reaction formulation for radiation and scattering from conducting surfaces
The piecewise-sinusoidal reaction technique was developed for low-frequency scattering and radiation from perfectly conducting bodies of arbitrary shape. The theory and numerical results for scattering patterns of rectangular plates and radiation patterns of corner-reflector antennas are presented
A zeta function approach to the relation between the numbers of symmetry planes and axes of a polytope
A derivation of the Ces\`aro-Fedorov relation from the Selberg trace formula
on an orbifolded 2-sphere is elaborated and extended to higher dimensions using
the known heat-kernel coefficients for manifolds with piecewise-linear
boundaries. Several results are obtained that relate the coefficients, ,
in the Shephard-Todd polynomial to the geometry of the fundamental domain. For
the 3-sphere we show that is given by the ratio of the volume of the
fundamental tetrahedron to its Schl\"afli reciprocal.Comment: Plain TeX, 26 pages (eqn. (86) corrected
- …