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ABSTRACT

The mutual impedance of nonplanar-skew sinusoidal dipoles is
presented rigorously as a summation of several exponential integrals
with complex arguments.
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I. INTRODUCTION

In 1957, H. E. King [i] published the mutual impedance
expressions for parallel dipoles in terms of sine-integrals and
cosine-integrals. This paper gives the analogous expressions for
non-parallel dipoles.

Previous communications consider the mutual impedance of
coplanar-skew sinusoidal dipoles [2], planar and nonplanar-skew
dipoles [31 and coplanar V dipoles [4]. A computer program is
available T5] for thin-wire antennas and scatterers with sinusoidal
bases and Galerkin's method. In this program, subroutine GGMM
evaluates the mutual impedance between filamentary monopoles with
sinusoidal current distributions. The mutual impedance of two V
dipoles is the sum of four monopole-monopole impedances. This paper
presents the expressions programmed in GGMM. For thin-wire structures,
the speed and accuracy [6] of the sinusoidal-Galerkin program is
attributed largely to the use of these expressions.

When the monopoles are relatively far apart, the impedance can
be calculated faster with numerical integration (as in subroutine
GGS). The expressions given here are most useful when the monopoles
are close together.

II. NEAR-ZONE FIELD OF THE SINUSOIDAL MONOPOLE

Many books [7] and papers [8] give the near-zone fields of a
sinusoidal line source in free space. This section presents the
fields of a time-harmonic electric line source (monopole) in a homo-
geneous conducting medium. The filamentary source is located on the
z axis with endpoints zI and z2 and length d as in Figure 1. A con-
venient expression for the current distribution is

(1) I(z) = I sinh(z 2 - z) + 12 sinh(z - zj)

sinh d

(2) y = s --

where the complex constants I 1 and 12 denote the endpoint currents.
The complex frequency is s = jw, and w may be real or complex. In
Eq. (1) and the subsequent equations, quantities of the form yx are
denoted simply by x. This convention applies only when x represents
a linear dimension (such as d) or a metric coordinate such as z.
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Fig. 1--Electric monopole and the coordinate system.

When the sinusoidal monopole radiates in a homogeneous conducting
medium with complex permeability 1 and complex permittivity :, the
field is given by

A _R1  -R2  -R1(3) Ep = A (I, e - 12 e ) sinh d + (I1 cosh d - 12) e cos 1
P L

+ (12 cosh d - 11) e- cOS 62

-R2 -R
(4) Ez = nA (I - 12 cosh d) e + - cosh d) e

(12 Ii eRl
R2  - R

(5) H = A (I, sinh d coseo + I, cosh d - 12) e

- (12 sinh d cos E2 - 12 cosh d + I) e-R2]
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(6) A = sinh d)
(4 sinh d)

(7) n =

where (p, 4z) denote the cylindrical coordinates. (R.,e., ) are the
coordinates in a spherical system with origin at the Jndoint z i .
The sinusoidal monopole has point charges at the endpoints, but they
will disappear when another monopole is connected to form a dipole.
For this reason, the contributions from the point charges are omitted
in the above field expressions.

III. MUTUAL IMPEDANCE OF SINUSOIDAL MONOPOLES

In the induced emf formulation, the mutual impedance of coupled
dipoles is

(8) Z - (t) - E*(t) dt

where 12 (t) denotes the current distribution (normalized to unit
terminal current) on dipole 2, and E(t) is the field of dipole 1 when
it transmits with unit terminal current. Distance along the axis of
dipole 2 is denoted by the coordinate t. In Eq. (8), El may be ex-
pressed as the sum of the fields from each of the monopoles comprising
dipole 1. Furthermore, the integral in Eq. (8) is the sum of the
integrations over each of the monopoles comprising dipole 2. Thus,
the dipole-dipole mutual impedance may be expressed as the sum of four
monopole-monopole impedances.

With no loss of generality, we again locate the source monopole
on the z axis with endpoints at z, and z 2 and length dI = z2 - z . As
shown in Figure 2, the receiving monopole is located on the t axis
with endpoints at tz and t2 and length d2  t 2 - t1. Monopole 2 lies
in the plane y = d. The coordinate origin for (x,y,z) is located at
the apparent intersection of the t axis and the z axis in Figure 2.
The origin for the t coordinate is at (x,y,z) = (O,d,O). Monopole 1
is a segment of dipole 1, and monopole 2 is a segment of dipole 2.
The monopole-monopole impedance will not necessarily satisfy the
eciprocity theorem. The reference directions for current are 2 and

t. The mutual impedance is defined by

(9) Z = t2 T(t) E(t) dt
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Fig. 2--Monopole 1 lies on the z axis and monopole 2 on the t axis
which is parallel with the xz plane and displaced a
distance d from it.

(10) E(t) = Ep cos sin@ + Ez cos*

(11) cos = x/p

In Eqs. (8) and (9) the integration variable is t and not yt. Let the
A - 4. f and ...the "

current distribution n monopole 1 e given Uy q. ,and the cur

on monopole 2 is

(12) -(t) = [ T, sinh(t 2 - t) + T2 sinh(t - tl)] /sinh dz

where T1 and 12 are the endpoint currents.
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To be consistent with Eqs. (8) and (9), the currents I(z) and
T(t) must have unit value at one end of the monopole and vanish at the
other end. Thus a double-subscript notation Zij is convenient for the
mutual impedance of two monopoles. The first subscript i has value
1 if I_1 = 1 and value 2 if 12 = 1. The second subscript j has value
1 if I, = I'and value 2 if 12 = 1. (The monopole has unit current at
the endpoint corresponding to the dipole terminals.) The first sub-
script is associated with the "source monopole" whose field E(t)
appears in Eq. (9). The second subscript is associated with the
"receiving monopole" with current I(t). As illustrated in Figure 3,
the source monopole is always a segment of the source dipole.

2 2

IZZl

I 12

Z21> 2

Z2 2

I I
SOVRCE RECEIVING
DIPOLE DIPOLE

Fig. 3--The mutual impedance of coupled dipoles may be expressed
as the sum of four monopole-monopole impedances:
Z = Zll + Z12 + Z21 + Z2 2 '

Omitting the lengthy derivations, the mutual impedance Zij for
skew monopoles is

tn Zm zm
(13) ij = (-) i+ j B[en (Fil - e G2 + e G2 2 )

-t -z z
e (Fi2 - e m G + e m G21
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(14) B= n
(16 r sinh di sinh d2)

where m = 2/i and n = 2/j. The functions Fik are defined by:

(15) Fik = 2 sinh dI ez cosE(Ri + azi cosp - kt)

where

z = (-1)k . The functions Gkk are defined as follows:

(16) Gk9 = E(R2 + mz2 + nt - j ) + E(R2 + mz2 + nt + ja)

-E(R1 + mz1 + nt - jB) - E(R1 + mz1 + nt + j )

where m = (- 1 )k, n = (-1)p and B = mb + nc.

In Eq. (16) and all the subsequent equations, j = /-T. Let

(17) b = c cost

(18) c = d/sing

In Eqs. (15) and (16), t denotes the position of an observation point
somewhere on monopole 2., R1 and R2 are distances from the endpoints
of monopole 1 to this observation point. Finally, the E functions are
defined as follows:

(19) E(a + jB) = eJyB eY dw

where a and are real quantities with dimensions of length, a is a
function of t, a, = a(ti), a2 = a(t 2 ) and y is given by Eq. (2). In
the right-hand side of Eq. (19), we abandon the convention of letting
x represent yx.

The integral in Eq. (19) may be expressed in terms of exponen-
tial integrals as follows:
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(20) S = e dv = E1 (vl) - E1 (V2 ) + j 2nr

The integration path is a horizontal line in the w plane or an inclined
straight line from vl to v2 in the v plane. The integer n is zero
unless this path intersects the negative real v axis at a point between
vi and v2 . When there is such an intersection,

a) n = 1 if v, lies above the real axis and v2 is below, or

b) n = -1 if v, lies below the real axis and v2 is above.

A subroutine EXPJ is available for the integral in Eq. (19). This
subroutine is used with GGMM for skew monopoles and dipoles. Although
the expressions given here fail for parallel monopoles, the subroutines
do not.

IV. CONCLUSIONS

Rigorous expressions are presented for the mutual impedance of
nonplanar-skew sinusoidal monopoles in a homogeneous conducting
medium in the complex frequency domain.
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APPENDIX

Two basic integrals are required to derive the results presented
herein. These "reaction integrals" were evaluated by N.H. Geary in
October 1968 and April 1969 with substitution of variables and partial
fraction expansions. The integrals are defined as follows:

(22) P = 2 et2 Yt e-YR cos cos cos e sind
R P

t 2  t -YR cos Q
(23) Q = 2 sin* e+Yt e R dt

In this appendix, a subscript i is understood on the quantities R,
e and z. The subscript may take on values 1 and 2. In the integrands,
all quantities are functions of t except Y and P. In terms of the
E function in Eq. (19), P and Q are given rigorously as follows:

(24) P = e-Yz E(x1 ) - eYZ E(X2 ) + e- z E(x3 ) - eYZ E(x)

(25) Q = eYZ E(xl) + eYZ E(x 2 ) + eYZ E(x3 ) + eYZ E(x4 )

- 2 e +Y z cos E(x5 )

(26) x, = R t - z + jb + jc

(27) x2 = R t + z - jb + jc

(28) X3  = 7t - z - jb * jc

(29) x 4 = R t + z + jb $ jc

(30) x = R t z cos*

All quantities not defined here are defined in the main text.
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